Product data sheet

Characteristics

RE8TA31BUTQ
industrial timing relay - $0.3 . .30 \mathrm{~s}$ - type A - 24 V AC/DC, 110.. 240 V AC - 1 C/O

Main	
Commercial Status	Commercialised
Range of product	Zelio Time
Product or component type	Optimum industrial timing relay
Component name	RE8
Time delay type	A
Time delay range	$0.3 \ldots 30 \mathrm{~s}$
$[$ Us] rated supply volt-	$24 \mathrm{~V} \mathrm{AC/DC}, 50 / 60 \mathrm{~Hz}$
age	$110 \ldots 240 \mathrm{~V} \mathrm{AC}, 50 / 60 \mathrm{~Hz}$
Sale per indivisible quantity	10

Complementary	
Discrete output type	Relay
Contacts material	90/10 silver nickel contacts
Width pitch dimension	22.5 mm
Voltage range	0.9...1.1 Us
Connections - terminals	Screw terminals $2 \times 2.5 \mathrm{~mm}^{2}$, flexible cablewithout cable end Screw terminals $2 \times 1.5 \mathrm{~mm}^{2}$, flexible cablewith cable end
Tightening torque	0.6...1.1 N.m
Setting accuracy of time delay	+/- 20% of full scale
Repeat accuracy	<1\%
Voltage drift	< 2.5 \%/V
Temperature drift	< 0.2 \%/ ${ }^{\circ} \mathrm{C}$
Minimum pulse duration	26 ms
Reset time	50 ms
Maximum switching voltage	250 V
Mechanical durability	20000000 cycles
[lth] conventional free air thermal current	8 A
[le] rated operational current	$\begin{aligned} & <=0.2 \mathrm{~A} \text { at } 115 \mathrm{~V}, \mathrm{DC}-13 \text { for } 70^{\circ} \mathrm{C} \text { conforming to VDE } 0660 \\ & <=0.2 \mathrm{~A} \text { at } 115 \mathrm{~V}, \mathrm{DC}-13 \text { for } 70^{\circ} \mathrm{C} \text { conforming to IICC } 60947-5-1 / 1991 \\ & <=0.1 \mathrm{~A} \text { at } 250 \mathrm{~V}, \mathrm{DC}-13 \text { for } 70^{\circ} \mathrm{C} \text { conforming to VDE } 0660 \\ & <=0.1 \mathrm{~A} \text { at } 250 \mathrm{~V}, \mathrm{DC}-13 \text { for } 70^{\circ} \mathrm{C} \text { conforming to IEC 60947-5-1/1991 } \\ & <=3 \mathrm{~A} \text { at } 24 \mathrm{~V}, \mathrm{AC}-15 \text { for } 70^{\circ} \mathrm{C} \text { conforming to VDE } 0660 \\ & <=3 \mathrm{~A} \text { at } 24 \mathrm{~V}, \mathrm{AC}-15 \text { for } 70^{\circ} \mathrm{C} \text { conforming to IEC } 60947-5-1 / 1991 \\ & <=2 \mathrm{~A} \text { at } 24 \mathrm{~V}, \mathrm{DC}-13 \text { for } 70^{\circ} \mathrm{C} \text { conforming to VDE } 0660 \\ & <=2 \mathrm{~A} \text { at } 24 \mathrm{~V}, \mathrm{DC}-13 \text { for } 70^{\circ} \mathrm{C} \text { conforming to IEC } 60947-5-1 / 1991 \end{aligned}$
Minimum switching capacity	10 mA at 12 V
Marking	CE
Overvoltage category	III conforming to IEC 60664-1
[Ui] rated insulation voltage	300 V conforming to CSA 250 V conforming to IEC
Supply disconnection value	>0.1 Uc
Operating position	Any position without derating factor
Surge withstand	2 kV conforming to IEC 61000-4-5 level 3
Power consumption in VA	8.5 VA at 240 V 1.8 VA at 110 V 0.7 VA at 24 V
Power consumption in W	0.5 W at 24 V
Terminal description	$\begin{aligned} & \text { (15-16-18)OC_OFF } \\ & \text { (A1-B1)CO } \\ & \text { ALT } \end{aligned}$

Height	78 mm
Width	22.5 mm
Depth	80 mm
Product weight	0.11 kg

Environment

Immunity to microbreaks	3 ms
Standards	$\mathrm{EN} / \mathrm{IEC} 61812-1$
Product certifications	CSA
	GL
UL	
Ambient air temperature for storage	$-40 \ldots . .85^{\circ} \mathrm{C}$
Ambient air temperature for operation	$-20 \ldots . .60^{\circ} \mathrm{C}$
Relative humidity	$15 \ldots . .85 \% 3 \mathrm{K3}$ conforming to IEC 60721-3-3
Vibration resistance	$0.35 \mathrm{~mm} 10 \ldots 55 \mathrm{~Hz}$ conforming to IEC 60068-2-6
Shock resistance	15 gn (duration = 11 ms conforming to IEC 60068-2-27
IP degree of protection	IP50 (casing)
	IP20 (terminals)
Pollution degree	3 conforming to IEC 60664-1
Dielectric test voltage	2.5 kV
Non-dissipating shock wave	4.8 kV
Resistance to electrostatic discharge	8 kV in air conforming to IEC 61000-4-2 level 3
Resistance to electromagnetic fields	6 kV in contact conforming to IEC 61000-4-2 level 3
Resistance to fast transients	$10 \mathrm{~V} / \mathrm{m}$ conforming to IEC 61000-4-3 level 3
Disturbance radiated/conducted	2 kV conforming to IEC 61000-4-4 level 3

Contractual warranty
Period 18 months

Description

The timing period T begins on energisation. After timing, the output(s) R close(s). The second output can be either timed or instantaneous.
Function: 1 Output

Function: 2 Outputs

2 timed outputs (R1/R2) or 1 timed output (R1) and 1 instantaneous output (R2 inst.)

Legend

Relay energised
Output open
Output closed
C Control contact
G Gate
R Relay or solid state output
R1/ 2 timed outputs
R2
R2 The second output is instantaneous if the right position is selected
inst.
T Timing period
Ta Adjustable On-delay
Tr Adjustable Off-delay
U Supply

Rail Mounting

Screw Fixing

Recommended Application Wiring Diagram

A.C. Load Curve 1

Electrical durability of contacts on resistive loading millions of operating cycles

X Current broken in A
Y Millions of operating cycles

A.C. Load Curve 2

Reduction factor k for inductive loads (applies to values taken from durability curve 1).

$X \quad$ Power factor on breaking $(\cos \phi)$
Y Reduction factor k
Example: An LC1-F185 contactor supplied with $115 \mathrm{~V} / 50 \mathrm{~Hz}$ for a consumption of 55 VA or a current consumption equal to 0.1 A and cos $\phi=0.3$. For 0.1 A , curve 1 indicates a durability of approximately 1.5 million operating cycles. As the load is inductive, it is necessary to apply a reduction coefficient k to this number of cycles as indicated by curve 2 . For $\cos \phi=0.3$: $k=0.6$ The electrical durability therefore becomes:1.5 10^{6} operating cycles $\times 0.6=900000$ operating cycles.

D. C. Load Limit Curve

$\mathrm{X} \quad$ Current in A
Y Voltage in V
$1 L / R=20 \mathrm{~ms}$
2 L/R with load protection diode
3 Resistive load

