General-Purpose AC Servo

MELSER/O

MODEL
HG-MR
HG-KR
HG-SR
SERVO MOTOR INSTRUCTION MANUAL (Vol. 3)

- Safety Instructions

Please read the instructions carefully before using the equipment.

Do not attempt to install, operate, maintain or inspect the equipment until you have read through this Instruction Manual and appended documents carefully and can use the equipment correctly. Do not use the equipment until you have a full knowledge of the equipment, safety information and instructions. In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".

\triangle WARNING

\triangle CAUTION

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight injury to personnel or may cause physical damage.

Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the instructions of both levels because they are important to personnel safety. What must not be done and what must be done are indicated by the following diagrammatic symbols.

Indicates what must not be done. For example, "No Fire" is indicated by

Indicates what must be done. For example, grounding is indicated by

In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so on are classified into "POINT".
After reading this Instruction Manual, keep it accessible to the operator.

1. To prevent electric shock, note the following

WARNING

-Before wiring and inspections, turn off the power and wait for 15 minutes or more until the charge lamp turns off. Then, confirm that the voltage between $\mathrm{P}+$ and N - is safe with a voltage tester and others. Otherwise, an electric shock may occur. In addition, when confirming whether the charge lamp is off or not, always confirm it from the front of the servo amplifier.

- Ground the servo amplifier and servo motor securely.
- Any person who is involved in wiring and inspection should be fully competent to do the work.

Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, it may cause an electric shock.
-The cables should not be damaged, stressed, loaded, or pinched. Otherwise, it may cause an electric shock.

- To avoid an electric shock, insulate the connections of the power supply terminals.

2. To prevent fire, note the following

Install the servo motor on incombustible material. Installing it directly or close to combustibles will lead to
a fire.
Provide an adequate protection to prevent screws and other conductive matter, oil and other combustible
matter from entering the servo motor.
3. To prevent injury, note the following

\triangle CAUTION

Only the voltage specified in the Instruction Manual should be applied to each terminal. Otherwise, a burst, damage, etc. may occur.

- Connect cables to the correct terminals. Otherwise, a burst, damage, etc. may occur.
- Ensure that polarity (+/-) is correct. Otherwise, a burst, damage, etc. may occur.
-The servo motor, etc. may be hot while power is on or for some time after power-off. Take safety measures, e.g. provide covers, to prevent accidental contact of hands and parts (cables, etc.) with them.
- The surface temperature of the servo motor may exceed $100^{\circ} \mathrm{C}$ depending on its mounting and operating conditions.
-During operation, never touch the rotor of the servo motor. Otherwise, it may cause injury.

4. Additional instructions

The following instructions should also be fully noted. Incorrect handling may cause a malfunction, injury, electric shock, etc.

(1) Transportation and installation

CAUTION

- Transport the products correctly according to their mass.
-Use the eyebolt of the servo motor for the transportation purpose only. Do not use the eyebolts to transport the servo motor when it is mounted on a machine.

CAUTION

-Stacking in excess of the specified number of product packages is not allowed.
Do not carry the servo motor by holding the cables, shaft, encoder, or connector.
Olnstall the servo amplifier and the servo motor in a load-bearing place in accordance with the Instruction Manual.
-Do not get on or put heavy load on the equipment.

- The equipment must be installed in the specified direction.

Do not install or operate the servo amplifier and servo motor which have been damaged or have any parts missing.

- Do not block intake and exhaust areas of the servo motor with a cooling fan. Otherwise, it may cause a malfunction.
-Do not drop or strike the servo motor. Isolate it from all impact loads.
-Securely fix the servo motor to the machine. If being attached insecurely, the servo motor may come off during operation.
-The geared servo motor must be installed in the specified direction to prevent oil leakage.
-When handling the servo motor, be careful about the edged parts such as the corners of the servo motor.
- Be sure to measure the motor vibration level with the servo motor mounted to the machine when checking the vibration level. A great vibration may cause the early damage of a bearing, encoder, brake, and reducer. The great vibration may also cause the poor connector connection or bolt looseness.
-For the gain adjustment at the equipment startup, check the torque waveform and the speed waveform with a measurement device, and then check that no vibration occurs. If the vibration occurs due to high gain, the vibration may cause the early damage of the servo motor.
- Take safety measures, e.g. provide covers, to prevent accidental access to the rotor of the servo motor during operation.
- Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. Otherwise, the encoder may malfunction.
-Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.
-When you keep or use the equipment, please fulfill the following environment.

Item		Environment
Ambient temperature	Operation	$0^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ (non-freezing)
	Storage	$-15^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$ (non-freezing)
Ambient humidity	Operation	80% RH or less (non-condensing)
	Storage	90% RH or less (non-condensing)
Ambience		Indoors (no direct sunlight), free from corrosive gas, flammable gas, oil mist, dust, and dirt
Altitude		Max. 1000 m above sea level
Vibration resistance (Note)	HG-MR Series/HG-KR Series	X, Y: $49 \mathrm{~m} / \mathrm{s}^{2}$
	$\begin{gathered} \hline \text { HG-SR51/HG-SR81/ } \\ \text { HG-SR52/HG-SR102/ } \\ \text { HG-SR152 } \end{gathered}$	X, Y: $24.5 \mathrm{~m} / \mathrm{s}^{2}$
	HG-SR121/HG-SR201/ HG-SR202/HG-SR352	X: $24.5 \mathrm{~m} / \mathrm{s}^{2} \mathrm{Y}: 49 \mathrm{~m} / \mathrm{s}^{2}$
	HG-SR301/HG-SR421/ HG-SR502/HG-SR702	$X: 24.5 \mathrm{~m} / \mathrm{s}^{2} \mathrm{Y}: 29.4 \mathrm{~m} / \mathrm{s}^{2}$

Note. Except the geared servo motor.
(2) Wiring

\triangle CAUTION

Wire the equipment correctly and securely. Otherwise, the servo motor may operate unexpectedly.
Do not install a power capacitor, surge killer, or radio noise filter (FR-BIF option) on the servo amplifier output side.

- To avoid a malfunction, connect the wires to the correct phase terminals (U, V, and W) of the servo amplifier and servo motor.
-Connect the servo amplifier power output (U, V, and W) to the servo motor power input (U, V, and W) directly. Do not let a magnetic contactor, etc. intervene. Otherwise, it may cause a malfunction.

Do not connect AC power supply directly to the servo motor. Otherwise, it may cause a malfunction.

- When the cable is not tightened enough to the terminal block, the cable or terminal block may generate heat because of the poor contact. Be sure to tighten the cable with specified torque.
(3) Test run and adjustment

\triangle CAUTION

Before operation, check the parameter settings. Improper settings may cause some machines to operate unexpectedly.
ONever adjust or change the parameter values extremely as it will make operation unstable.

(4) Usage

-Provide an external emergency stop circuit to ensure that operation can be stopped and power switched off immediately.
-Do not scratch the coated surface with hard objects nor clean the coated surface with an organic solvent.
Doing so may scuff the surface.
-Do not disassemble, repair, or modify the equipment.
-Use the servo amplifier with the specified servo motor.
-The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used for ordinary braking.
-For such reasons as service life and mechanical structure (e.g. where a ball screw and the servo motor are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety, install a stopper on the machine side.

(5) Corrective actions

\triangle CAUTION

-When it is assumed that a hazardous condition may occur due to a power failure or product malfunction, use a servo motor with an electromagnetic brake or external brake to prevent the condition.

- Configure an electromagnetic brake circuit so that it is activated also by an external EMG stop switch.

Ohen any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before restarting operation.

- Provide an adequate protection to prevent unexpected restart after an instantaneous power failure.

(6) Storage

- CAUTION

ONote the followings when storing the servo motor for an extended period of time (guideline: three or more months).

- Always store the servo motor indoors in a clean and dry place.

OIf it is stored in a dusty or damp place, make adequate provision, e.g. cover the whole product.
OIf the insulation resistance of the winding decreases, check how to store the equipment.

- Though the servo motor is rust-proofed before shipment using paint or rust prevention oil, rust may be produced depending on the storage conditions or storage period. If the servo motor is to be stored for longer than six months, apply rust prevention oil again especially to the machined surfaces of the shaft, etc.
-Before using the product after storage for an extended period of time, hand-turn the servo motor output shaft to confirm that nothing is wrong with the servo motor. When the servo motor is equipped with an electromagnetic brake, make the above check after releasing the electromagnetic brake with the brake power supply.
When the product has been stored for an extended period of time, contact your local sales office.

(7) General instruction

To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn without covers and safety guards. When the equipment is operated, the covers and safety guards must be installed as specified. Operation must be performed in accordance with this Specifications and Instruction Manual.

- DISPOSAL OF WASTE

Please dispose a servo motor and other options according to your local laws and regulations.

«U.S. customary units»

U.S. customary units are not shown in this manual. Convert the values if necessary according to the following table.

Quantity	SI (metric) unit	U.S. customary unit
Mass	$1[\mathrm{~kg}]$	$2.2046[\mathrm{lb}]$
Length	$1[\mathrm{~mm}]$	$0.03937[\mathrm{in}]$
Torque	$1[\mathrm{~N} \cdot \mathrm{~m}]$	$141.6[\mathrm{oz} \cdot \mathrm{in}]$
Moment of inertia	$1\left[\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\right]$	$5.4675\left[\mathrm{oz} \cdot \mathrm{in}^{2}\right]$
Load (thrust load/axial load)	$1[\mathrm{~N}]$	$0.2248[\mathrm{lbf}]$
Temperature	$\mathrm{N}\left[{ }^{\circ} \mathrm{C}\right] \times 9 / 5+32$	$\mathrm{~N}\left[{ }^{\circ} \mathrm{F}\right]$

CONTENTS

1.1 Rating plate 1-1
1.2 Parts identification. 1-1
1.3 Electromagnetic brake 1-2
1.4 Servo motor shaft shapes 1-4
2. INSTALLATION 2-1 to 2-6
2.1 Mounting direction 2-2
2.2 Load remove precautions 2-3
2.3 Permissible load for the shaft 2-4
2.4 Protection from oil and water 2-4
2.5 Cable 2-5
2.6 Inspection items 2-5
2.7 Parts having service lives 2-5
2.8 Machine accuracies 2-6
3. CONNECTORS USED FOR SERVO MOTOR WIRING 3-1 to 3-6
3.1 Selection of connectors 3-1
3.2 Wiring connectors (connector configurations $A / B / C$) 3-2
3.3 Wiring connectors (connector configurations D/E/F/G/H) 3-3
4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR 4-1 to 4-16
4.1 Connection instructions 4-2
4.2 Wiring 4-3
4.2.1 HG-MR series/HG-KR series servo motor 4-3
4.2.2 HG-SR series servo motor 4-8
4.3 Selection example of wires 4-11
4.4 Servo amplifier terminal section 4-13
5. WIRING OPTION 5-1 to 5-24
5.1 Cable/connector sets 5-1
5.1.1 Combinations of cable/connector sets 5-2
5.1.2 Cable and connector list. 5-3
5.2 Encoder cable/connector sets 5-7
5.3 Servo motor power cable 5-19
5.4 Electromagnetic brake cable 5-20
5.5 Wires for option cables 5-22
6. HG-MR SERIES/HG-KR SERIES6-1 to 6-58
6.1 Model code definition 6-1
6.2 Combination list of servo motors and servo amplifiers 6-1
6.3 Standard specifications 6-2
6.3.1 Standard specifications list 6-2
6.3.2 Torque characteristics 6-4
6.4 Electromagnetic brake characteristics 6-5
6.5 Servo motors with special shafts 6-6
6.5.1 Key shaft (with 2 round end key) 6-6
6.5.2 D cut shaft 6-6
6.6 Geared servo motors 6-7
6.6.1 For general industrial machines compliant (G1) 6-7
6.6.2 For precision applications compliant (G5/G7) 6-10
6.7 Mounting connectors 6-13
6.8 Dimensions 6-14
6.8.1 Standard (without an electromagnetic brake, without a reducer) 6-14
6.8.2 With an electromagnetic brake 6-17
6.8.3 For general industrial machine with a reducer (without an electromagnetic brake) 6-20
6.8.4 For general industrial machine with a reducer (with an electromagnetic brake) 6-27
6.8.5 Flange-mounting flange output type for precision application compliant (without an electromagnetic brake). 6-33
6.8.6 For precision application with flange mounting, flange output type reducer (with an electromagnetic brake) 6-39
6.8.7 For precision application with flange mounting, shaft output type reducer (without an electromagnetic brake). 6-45
6.8.8 Flange-mounting shaft output type for precision application compliant (with an electromagnetic brake) 6-51
7.1 Model code definition 7-1
7.2 Combination list of servo motors and servo amplifiers 7-2
7.3 Standard specifications 7-3
7.3.1 Standard specifications list 7-3
7.3.2 Torque characteristics 7-5
7.4 Electromagnetic brake characteristics 7-6
7.5 Servo motors with special shafts 7-7
7.6 Geared servo motors 7-8
7.6.1 For general industrial machines compliant (G1/G1H) 7-8
7.6.2 For precision applications compliant (G5/G7) 7-12
7.7 Dimensions 7-15
7.7.1 Standard (without an electromagnetic brake, without a reducer) 7-15
7.7.2 With an electromagnetic brake 7-18
7.7.3 For general industrial machine with a reducer (without an electromagnetic brake) 7-25
7.7.4 For general industrial machine with a reducer (with an electromagnetic brake) 7-35
7.7.5 For general industrial machine with a reducer (foot-mounting/without an electromagnetic brake) 7-45
7.7.6 For general industrial machine with a reducer (foot-mounting/with an electromagnetic brake). 7-55
7.7.7 Flange-mounting flange output type for precision application compliant (without an electromagnetic brake). 7-66
7.7.8 For precision application with flange mounting, flange output type reducer (with an electromagnetic brake). 7-73
7.7.9 For precision application with flange mounting, shaft output type reducer (without an electromagnetic brake) 7-80
7.7.10 Flange-mounting shaft output type for precision application compliant (with an electromagnetic brake) 7-87
APPENDIXApp. - 1 to App. -30
App. 1 Servo motor ID codes App.- 1
App. 2 Manufacturer list App.- 1
App. 3 Compliance with the CE marking App.- 2
App. 4 Compliance with UL/CSA standard App.- 3
App. 5 Calculation methods for designing App.- 5
App. 6 Selection example of servo motor power cable App.-23
App. 7 Crimping connector for CNP3 App.-24
App. 8 Connector dimensions App.-25

MEMO

1. INTRODUCTION

1.1 Rating plate

Note 1. Production year and month of the servo motor are indicated in a serial number on the rating plate.
The year and month are indicated by the last two digits of the year and one digit of the month [1 to $9, X(10), Y(11)$, and $Z(12)$].
For January 2012, the Serial No. is like, "SER. \qquad 121".
2. Products approved by Certification Bodies are marked. The marks depends on the Certification Bodies.

1.2 Parts identification

(1) HG-MR series/HG-KR series servo motor

Power cable (Note 1, 2) ——Encoder cable (Note 1)

- Power lead (U/V/W)
- Grounding lead

Note 1. The encoder cable and power supply cable are options.
2. An electromagnetic brake cable is separately required for the servo motor with an electromagnetic brake
(2) HG-SR series servo motor

Power supply connector (Note)

- Power supply (U/V/W)
- Grounding (\odot)

Note. The servo motor with an electromagnetic brake has the electromagnetic brake connector separately.
1.3 Electromagnetic brake

The electromagnetic brake is provided to prevent a drop at a power failure or servo alarm occurrence during vertical drive or to hold a shaft at a stop. Do not use it for normal braking (including braking at servo-lock). The electromagnetic brake has a time lag. Use the electromagnetic brake so that servo motor control starts after the electromagnetic brake has completely opened. Be sure to check the time lag of the braking with a real machine. configure an electromagnetic brake circuit so that it is activated also by an external EMG stop switch. For details of the circuit configuration and timing chart, refer to the Servo Amplifier Instruction Manual. While the electromagnetic brake is opened, the motor may be raised to high temperature regardless of driving. The life will be shorten under sudden acceleration/deceleration conditions.

The servo motor with an electromagnetic brake can be used to prevent a drop in vertical lift applications or to ensure double safety at an emergency stop, for example. When operating the servo motor, supply power to the electromagnetic brake to release the brake. Switching power off enables the brake.
(1) Electromagnetic brake power supply

Prepare the following power supply for use with the electromagnetic brake only. The electromagnetic brake terminals (B1 and B2) have no polarity.

The surge absorber (VAR) must be installed between B1 and B2. For the selection and example of surge absorbers, refer to "Electromagnetic brake characteristic" in the chapter of each servo motor series.
When you use a diode for a surge absorber, the electromagnetic braking time will be longer.
(2) Sound generation

Though the brake lining may rattle during operation, it poses no functional problem.
If braking sounds, it may be improved by setting the machine resonance suppression filter in the servo amplifier parameters. For details, refer to the servo amplifier instruction manual.
(3) Selection of surge absorbers for electromagnetic brake circuit

The following shows an example how to select a varistor with a surge absorber.
(a) Selection conditions

Item	Condition
Electromagnetic brake specification	$\mathrm{R}[\Omega]:$ Resistance $\mathrm{L}[\mathrm{H}]$: Inductance $\mathrm{Vb}[\mathrm{V}]$: Power supply voltage
Desired suppression voltage	$\mathrm{Vs}[\mathrm{V}]$ or less
Durable surge application time	N times

(b) Tentative selection and verification of surge absorber

1) Maximum allowable circuit voltage of varistor

Tentatively select a varistor whose maximum allowable voltage is larger than $\mathrm{Vb}[\mathrm{V}]$.
2) Brake current (lb)
$\mathrm{lb}=\frac{\mathrm{Vb}}{\mathrm{R}}[\mathrm{A}]$
3) Energy (E) generated by brake coil
$E=\frac{\mathrm{L} \times \mathrm{lb}^{2}}{2}[\mathrm{~J}]$
4) Varistor limit voltage (Vi)

From the energy (E) generated in the brake coil and the varister characteristic diagram, calculate the varistor limit voltage (Vi) when the brake current (lb) flows into the tentatively selected varistor during opening of the circuit.
Vi is favorable when the varistor limit voltage $(\mathrm{Vi})[\mathrm{V}]$ is smaller than the desired suppressed voltage (Vs) [V].
If Vi is not smaller than Vs , reselect a varistor or improve the withstand voltage of devices.
5) Surge current width (T)

Given that the varistor absorbs all energies, the surge current width (T) will be as follows.
$T=\frac{E}{V i \times l b}[S]$
6) Examining surge life of varister

From the varistor characteristic diagram, the guaranteed current value (lp) in which the number of the surge application life is N at the surge current width (T). Calculate the guaranteed current value (lp) ratio to brake current (lb).
If an enough margin is ensured for $\mathrm{lp} / \mathrm{lb}$, the number of the surge application life N [time] can be considered as favorable.
(4) Others

A leakage magnetic flux will occur at the shaft end of the servo motor equipped with an electromagnetic brake. Note that chips, screws and other magnetic substances are attracted.

1.4 Servo motor shaft shapes

In addition to the straight shaft, the key shaft and D cut shaft are available as the servo motor shafts.
The key shaft and D cut shaft cannot be used in frequent start/stop applications.
Since we cannot warrant the servo motor against fracture and similar accidents attributable to a loose key, use a friction coupling, etc. when coupling the shaft with a machine.
The shaft shape of the standard servo motor changes depending on the series and capacity. Refer to the chapter of the servo motor series.
The key shaft (with single pointed key) applies to only the geared servo motor for precision application.

Key shaft (with 2 round end key)

D cut shaft

Key shaft (with single pointed key)

2. INSTALLATION

WARNING To prevent electric shock, ground each equipment securely.

- Stacking in excess of the specified number of product packages is not allowed.
- Install the equipment on incombustible material. Installing it directly or close to combustibles will lead to a fire.
- Install the servo amplifier and the servo motor in a load-bearing place in accordance with the Instruction Manual.
- Do not get on or put heavy load on the equipment. Otherwise, it may cause injury.
- Use the equipment within the specified environmental range. For the environment, refer to the specifications of the servo motor series.
-Do not drop or strike the servo motor. Isolate it from all impact loads.
-Do not install or operate a faulty servo motor.
- Do not carry the servo motor by holding the cables, shaft, encoder, or connector. Otherwise, it may cause a malfunction or injury.
- Use the eyebolts of the servo motor to only transport it. Do not use the eyebolts to transport the servo motor when it is mounted on a machine.
- The geared servo motor must be mounted in the specified direction. Otherwise, it can leak oil, leading to a fire or malfunction.
- Securely fix the servo motor to the machine. If being attached insecurely, the servo motor may come off during operation, leading to injury.
- Be sure to measure the motor vibration level with the servo motor mounted on the machine when checking the vibration level. A great vibration may cause the early damage of a bearing, encoder, brake, and reducer. The great vibration may also cause the poor connector connection or bolt looseness.
-For the gain adjustment at the equipment startup, check the torque waveform and the speed waveform with a measurement device to check that no vibration occurs. If the vibration occurs due to high gain, the vibration may cause the early damage of the servo motor.
- Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. Otherwise, the encoder may malfunction.
-When coupling a load to the servo motor, do not use a rigid coupling. Doing so can cause the shaft to break and the bearing to wear out.
- Balance the load to the extent possible. Not doing so can cause vibration during servo motor operation or damage the bearings and encoder.
- Take safety measures, e.g. provide covers, to prevent accidental access to the rotor of the servo motor during operation.
- Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break, leading to injury.
-When the product has been stored for an extended period of time, contact your local sales office.
-When handling the servo motor, be careful about the edged parts such as the corners of the servo motor.

2. INSTALLATION

2.1 Mounting direction

(1) Standard servo motor

The following table indicates the mounting direction of the standard servo motor.

Servo motor series	Mounting direction
HG-MR	May be installed in any
HG-KR	direction.
HG-SR	

For mounting in the horizontal direction, it is recommended to set the connector section downward. When installing the servo motor vertically or obliquely, provide a connection and trap for the cable.

(2) Servo motor with an electromagnetic brake

The servo motor with an electromagnetic brake can also be installed in the same orientation as the standard servo motor. When the servo motor with an electromagnetic brake is installed with the shaft end at top, the brake plate may generate sliding sound but it is not a fault.
(3) Geared servo motors

The mounting direction of the geared servo motor differs depending on the reducer type. Be sure to mount it in the specified direction. Refer to the chapter of the servo motor series for details.

During assembling, the shaft end must not be hammered. Otherwise, the encoder may malfunction.

Do not process the shaft to avoid damage to the encoder and bearing.
(1) When mounting a pulley to the servo motor with a key shaft, use the screw hole in the shaft end. To fit the pulley, first insert a double-end stud into the screw hole of the shaft, put a washer against the end face of the coupling, and insert and tighten a nut to force the pulley in.

(2) For the shaft without a key, use a friction coupling or the like.
(3) When removing the pulley, use a pulley remover to protect the shaft from hard load and or impact.
(4) To ensure safety, fit a protective cover or the like on the rotary area, such as the pulley, mounted to the shaft.
(5) When a threaded shaft end part is needed to mount a pulley on the shaft, please contact your local sales office.
(6) The direction of the encoder on the servo motor cannot be changed.
(7) When mounting the servo motor, use spring washers, etc. and fully tighten the bolts so that they do not become loose due to vibration.

! CAUTION | Do not use a rigid coupling as it may apply excessive bending load to the shaft of |
| :---: |
| the servo motor, leading the shaft to break and the bearing to wear out. |

For the permissible shaft load specific to the servo motor, refer to the chapter of the servo motor series.
(1) Use a flexible coupling and adjust the misalignment of the shaft to less than the permissible radial load.
(2) When using a pulley, sprocket or timing belt, select a diameter that will fit into the permissible radial load.
(3) Excess of the permissible load can cause the bearing life to reduce and the shaft to break.
(4) The load indicated in this section is static load in a single direction and does not include eccentric load. Make eccentric load as small as possible. Not doing so can cause the servo motor to be damaged.

2.4 Protection from oil and water

Provide adequate protection to prevent foreign matter, such as oil from entering the servo motor shaft. When installing the servo motor, consider the items in this section.
(1) Do not use the servo motor with its cable soaked in oil or water.

(2) When the servo motor is to be installed with the shaft end at top, provide measures so that it is not exposed to oil and water entering from the machine side, gear box, etc.

(3) If oil such as coolant drops on the servo motor, the sealant, packing, cable and others may be affected depending on the oil type.
(4) In the environment where the servo motor is exposed to oil mist, oil, water, grease and/or like, a standard specifications servo motor may not be usable. Please contact your local sales office.

2.5 Cable

The power supply and encoder cables routed from the servo motor should be fixed to the servo motor to keep them unmovable. Otherwise, the cable may disconnect. In addition, do not modify the connectors, terminals and others at the ends of the cables.
2.6 Inspection items

| Before starting maintenance and/or inspection, turn off the power and wait for 15 |
| :--- | :--- |
| minutes or more until the charge lamp turns off. Then, confirm that the voltage |
| between P+ and N - is safe with a voltage tester and others. Otherwise, an electric |
| shock may occur. In addition, when confirming whether the charge lamp is off or |
| not, always confirm it from the front of the servo amplifier. |
| -To avoid an electric shock, only qualified personnel should attempt inspections. |
| For repair and parts replacement, contact your local sales office. |

CAUTION -Do not disassemble and/or repair the equipment on customer side.

It is recommended that the following points periodically be checked.
(1) Check the bearings, brake section, etc. for unusual noise.
(2) Check the cables and the like for scratches or cracks. Especially when the cable is movable, perform periodic inspection according to operating conditions.
(3) Check the servo motor shaft and coupling for misalignment.
(4) Check the power supply connector and encoder connector tightening screws for looseness.

2.7 Parts having service lives

Service lives of the following parts are listed below. However, the service lives vary depending on operation and environment. If any fault is found in the parts, they must be replaced immediately regardless of their service lives. For parts replacement, please contact your local sales office.

Part name	Life guideline
Bearings	20,000 hours to
	30,000 hours
Encoder	20,000 hours to
	30,000 hours
Oil seal	5000 hours

(1) Bearings

When the servo motor is run at rated speed under rated load, bearings should be exchanged in 20,000 to 30,000 hours as a guideline. This differs on the operating conditions. The bearings must also be changed if unusual noise or vibration is found during inspection.
(2) Oil seal (including oil seal used on the reducer)

Oil seals must be changed in 5,000 hours of operation at rated speed as a guideline. They must also be changed if oil leakage, etc. is found during inspection.
The functions have no problem even if an oil seal may sound during operation.

2. INSTALLATION

2.8 Machine accuracies

The following table indicates the machine accuracies of the servo motor around the output shaft and mounting. (except the optional products)

Accuracy [mm]	Measuring position	100×100 or less	130×130	176×176 to 250×250	280×280 or more
Runout of flange surface to output shaft		0.05	0.06	0.08	0.08
Runout of fitting OD of flange surface		0.04	0.04	0.06	0.08
Runout of output shaft end	c)	0.02	0.02	0.03	0.03

3. CONNECTORS USED FOR SERVO MOTOR WIRING

3. CONNECTORS USED FOR SERVO MOTOR WIRING

POINT

The IP rating indicated is the connector's protection against ingress of dust and water when the connector is connected to a servo amplifier or servo motor. If the IP rating of the connector, servo amplifier and servo motor vary, the overall IP rating depends on the lowest IP rating of all components.

3.1 Selection of connectors

Use the connector configuration products given in the table as the connectors for connection with the servo motor. Refer to section 3.2 and 3.3 for the compatible connector configuration products.
(1) HG-MR series and HG-KR series

Servo motor	Wiring connector		
	For encoder	For power supply	For electromagnetic brake
HG-MR_	Connector configuration A	Connector configuration B	Connector configuration C
HG-KR_			

(2) HG-SR series

Servo motor	Wiring connector		
	For encoder	For power supply	For electromagnetic brake
HG-SR51/HG-SR81		Connector configuration E	
HG-SR52/HG-SR102/ HG-SR152		Connector HG-SR121/HG-SR201/ HG-SR301	Connector configuration D
HG-SR202/HG-SR352/ HG-SR502		Connector configuration F	
HG-SR421		Connector configuration H	
HG-SR702			

3. CONNECTORS USED FOR SERVO MOTOR WIRING

3.2 Wiring connectors (connector configurations $A / B / C$)

The connectors in this section comply with UL/CSA standards.

Connector configuration	Feature	Connector	Crimping tool	Servo motor encoder connector (Note)
A (for encoder)	IP65	Connector: 2174053-1 (TE Connectivity)	For ground clip: 1596970-1 For REC. contact: 1596847-1 (TE Connectivity)	1674339-1 (TE Connectivity)

Note. The other side connector

Connector configuration	Feature	Connector	Crimping tool	Servo motor power supply connector (Note)
B		Connector: KN4FT04SJ1-R HOOD/SOCKET INSULATOR/ (for power supply)	IP65	CT160-3-TMH5B (JAE) Contact: ST-TMH-S-C1B-100 (A534G) (JAE)

Note. The other side connector

Connector configuration	Feature	Connector	Servo motor electromagnetic brake connector (Note)	
C		Connector: JN4FT02SJ1-R HOOD/SOCKET INSULATOR/ (for electromagnetic brake)	IP65	CT160-3-TMH5B (JAE) Contact: ST-TMH-S-C1B-100 (A534G) (JAE)

[^0]
3. CONNECTORS USED FOR SERVO MOTOR WIRING

3.3 Wiring connectors (connector configurations D/E/F/G/H)

Connector configuration	Feature	Plug (DDK)					Servo motor encoder connector (Note)
		Type	Plug	Socket contact	Contact shape	Cable OD [mm] (reference)	
$\left\|\begin{array}{c} \text { D } \\ \text { (for encoder) } \end{array}\right\|$	IP67	Straight	CMV1-SP10S-M1 (one-touch connection type) CMV1S-SP10S-M1 (screw type)	CMV1-\#22ASC-S1-100	Soldering type Applicable wire size: AWG 20 or less	5.5 to 7.5	CMV1-R10P
				CMV1-\#22ASC-C1-100	Crimping type Applicable wire size: AWG 24 to 20 The crimping tool (357J-53162T) is required.		
				CMV1-\#22ASC-C2-100	Crimping type Applicable wire size: AWG 28 to 24 The crimping tool (357J-53163T) is required.		
			CMV1-SP10S-M2 (one-touch connection type) CMV1S-SP10S-M2 (screw type)	CMV1-\#22ASC-S1-100	Soldering type Applicable wire size: AWG 20 or less	7.0 to 9.0	
				CMV1-\#22ASC-C1-100	Crimping type Applicable wire size: AWG 24 to 20 The crimping tool (357J-53162T) is required.		
				CMV1-\#22ASC-C2-100	Crimping type Applicable wire size: AWG 28 to 24 The crimping tool (357J-53163T) is required.		
		Angle	CMV1-AP10S-M1 (one-touch connection type) CMV1S-AP10S-M1 (screw type)	CMV1-\#22ASC-S1-100	Soldering type Applicable wire size: AWG 20 or less	5.5 to 7.5	
				CMV1-\#22ASC-C1-100	Crimping type Applicable wire size: AWG 24 to 20 The crimping tool (357J-53162T) is required.		
				CMV1-\#22ASC-C2-100	Crimping type Applicable wire size: AWG 28 to 24 The crimping tool (357J-53163T) is required.		
			CMV1-AP10S-M2 (one-touch connection type) CMV1S-AP10S-M2 (screw type)	CMV1-\#22ASC-S1-100	Soldering type Applicable wire size: AWG 20 or less	7.0 to 9.0	
				CMV1-\#22ASC-C1-100	Crimping type Applicable wire size: AWG 24 to 20 The crimping tool (357J-53162T) is required.		
				CMV1-\#22ASC-C2-100	Crimping type Applicable wire size: AWG 28 to 24 The crimping tool (357J-53163T) is required.		

Note. The other side connector

3. CONNECTORS USED FOR SERVO MOTOR WIRING

Connector configuration	Feature	Plug (DDK)		Cable clamp (DDK)		Servo motor power supply connector (Note 2)
		Type	Model	Cabel OD [mm] (reference)	Model	
E (for power supply)	IP67 EN compliant	Straight	CE05-6A18-10SD-D-BSS Applicable wire size: AWG 14 to 12	8.5 to 11	CE3057-10A-2-D	MS3102A18-10P
				10.5 to 14.1	CE3057-10A-1-D	
		Angle	CE05-8A18-10SD-D-BAS Applicable wire size: AWG 14 to 12	8.5 to 11	CE3057-10A-2-D	
				10.5 to 14.1	CE3057-10A-1-D	
	(Note 1) General environment	Straight	D/MS3106B18-10S Applicable wire size: AWG 14 to 12	14.3 or less (bushing ID)	D/MS3057-10A	
		Angle	D/MS3108B18-10S Applicable wire size: AWG 14 to 12			

Note 1. Not comply with EN.
2. The other side connector

Note. The other side connector

3. CONNECTORS USED FOR SERVO MOTOR WIRING

Connector configuration	Feature	Plug (DDK)		Cable clamp (DDK)		Servo motor power supply connector (Note 2)
		Type	Model	Cabel OD [mm] (reference)	Model	
G (for power supply)	IP67 EN compliant	Straight	CE05-6A22-22SD-D-BSS Applicable wire size: AWG 10 to 8	9.5 to 13	CE3057-12A-2-D	MS3102A22-22P
				12.5 to 16	CE3057-12A-1-D	
		Angle	CE05-8A22-22SD-D-BAS Applicable wire size: AWG 10 to 8	9.5 to 13	CE3057-12A-2-D	
				12.5 to 16	CE3057-12A-1-D	
	(Note 1) General environment	Straight	D/MS3106B22-22S Applicable wire size: AWG 10 to 8	15.9 or less (bushing ID)	D/MS3057-12A	
		Angle	D/MS3108B22-22S Applicable wire size: AWG 10 to 8			

Note 1. Not comply with EN.
2. The other side connector

Connector configuration	Feature	Plug (DDK)		Cable clamp (DDK)		Servo motor power supply connector (Note 2)
		Type	Model	Cabel OD [mm] (reference)	Model	
H (for power supply)	IP67 EN compliant	Straight	CE05-6A32-17SD-D-BSS Applicable wire size: AWG 6 to 4	22 to 23.8	CE3057-20A-1-D	MS3102A32-17P
		Angle	CE05-8A32-17SD-D-BAS Applicable wire size: AWG 6 to 4			
	(Note 1) General environment	Straight	D/MS3106B32-17S Applicable wire size: AWG 6 to 4	23.8 or less (bushing ID)	D/MS3057-20A	
		Angle	D/MS3108B32-17S Applicable wire size: AWG 6 to 4			

Note 1. Not comply with EN.
2. The other side connector

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

-Any person who is involved in wiring should be fully competent to do the work.

- Ground the servo motor securely.
-Do not attempt to wire the servo motor until it has been mounted. Otherwise, it may cause an electric shock.
The cables should not be damaged, stressed, loaded, or pinched. Otherwise, it may cause an electric shock.
To avoid an electric shock, insulate the connections of the power supply terminals.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

4.1 Connection instructions

| To avoid a malfunction, connect the wires to the correct phase terminals (U, V , |
| :--- | :--- |
| and W) of the servo amplifier and servo motor. |
| -Do not connect AC power supply directly to the servo motor. Otherwise, it may |
| cause a malfunction. |
| oDo not use the 24 V DC interface power supply for the electromagnetic brake. |
| Always use the power supply designed exclusively for the electromagnetic brake. |
| Otherwise, it may cause a malfunction. |

POINT
-Refer to chapter 5 for the selection of the encoder cable.

- Refer to the chapter of the servo motor series for the selection of a surge absorber for the electromagnetic brake.

For grounding, connect the grounding lead wire from the servo motor to the protective earth (PE) terminal of the servo amplifier, and then connect the wire from the servo amplifier to the ground via the protective earth of the cabinet. Do not connect the wire directly to the protective earth of the cabinet.

Note. The number of PE terminals of the servo amplifier differs depending on the amplifier types.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

4.2 Wiring

4.2.1 HG-MR series/HG-KR series servo motor

(1) Connection with MR-J4 1-axis servo amplifier
(a) Servo motor power supply cable wiring diagrams

1) When cable length is 10 m or less

2) When cable length exceeds 10 m

When the cable length exceeds 10 m , fabricate an extension cable as shown below. In this case, the motor power supply cable should be within 2 m long.
Refer to section 4.3 for the wire used for the extension cable.

Note. Use of the following connectors is recommended when ingress protection (IP65) is necessary.

Junction connector	Description	IP rating	
a) Junction connector for extension cable	Connector: RM15WTPZ-4P(71) Cord clamp: JR13WCC-5(72) (Hirose Electric)	Connector: RM15WTJZ-4S(71) Cord clamp: JR13WCC-8(72) (Hirose Electric)	IP65
b) Junction connector for motor power supply cable	IP65		

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

(b) Electromagnetic brake cable wiring diagrams

1) When cable length is 10 m or less

Note 1. Connect a surge absorber as close to the servo motor as possible.
2. There is no polarity in electromagnetic brake terminals (B1 and B2).
3. Do not use the 24 V DC interface power supply for the electromagnetic brake.
4. Create the circuit in order to shut off by interlocking with the emergency stop switch.

When fabricating the electromagnetic brake cable MR-BKS1CBL-_M-H, refer to section 5.4 and 5.5.
2) When cable length exceeds 10 m

When the cable length exceeds 10 m , fabricate an extension cable as shown below. In this case, the electromagnetic brake cable should be within 2 m .
Refer to section 4.3 for the wire used for the extension cable.

Note 1. Connect a surge absorber as close to the servo motor as possible.
2. Use of the following connectors is recommended when ingress protection (IP65) is necessary.

Junction connector	Description	IP rating
a) Junction connector for extension cable	$\begin{array}{\|r\|} \hline \text { CM10-CR2P-* } \\ \qquad \text { (DDK) } \\ \text { Wire size: } \mathrm{S}, \mathrm{M}, \mathrm{~L} \\ \hline \end{array}$	IP65
b) Junction connector for electromagnetic brake cable	CMV1-SP2S-*(DDK) L Wire size: S, M1, M2, L	IP65

3. Create the circuit in order to shut off by interlocking with the emergency stop switch.
4. There is no polarity in electromagnetic brake terminals (B1 and B2).
5. Do not use the 24 V DC interface power supply for the electromagnetic brake.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

(2) Connection with MR-J4 multi-axis servo amplifier
(a) Servo motor power supply cable wiring diagrams

1) When cable length is 10 m or less

Note. CNP3 is for the MR-J4 3-axis servo amplifier.
2) When cable length exceeds 10 m

When the cable length exceeds 10 m , fabricate an extension cable as shown below. In this case, the motor power supply cable should be within 2 m long.
Refer to section 4.3 for the wire used for the extension cable.

Note 1. CNP3 is for the MR-J4 3-axis servo amplifier.
2. Use of the following connectors is recommended when ingress protection (IP65) is necessary.

Junction connector	Description	IP rating
a) Junction connector for extension cable	Connector: RM15WTPZ-4P(71) Cord clamp: JR13WCC-5(72) (Hirose Electric)	IP65
b) Junction connector for motor power supply cable	Connector: RM15WTJZ-4S(71) Cord clamp: JR13WCC-8(72) (Hirose Electric)	IP65

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

(b) Electromagnetic brake cable wiring diagrams

1) When cable length is 10 m or less

Note 1. Connect a surge absorber as close to the servo motor as possible.
2. There is no polarity in electromagnetic brake terminals (B1 and B2).
3. Create the circuit in order to shut off by interlocking with the emergency stop switch.
4. Do not use the 24 V DC interface power supply for the electromagnetic brake.
5. This connection is for the MR-J4 3-axis servo amplifier.

When fabricating the electromagnetic brake cable MR-BKS1CBL-_M-H, refer to section 5.4 .

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

2) When cable length exceeds 10 m

When the cable length exceeds 10 m , fabricate an extension cable as shown below. In this case, the electromagnetic brake cable should be within 2 m .
Refer to section 4.3 for the wire used for the extension cable.

(Note 6)

Note 1. Connect a surge absorber as close to the servo motor as possible.
2. Use of the following connectors is recommended when ingress protection (IP65) is necessary.

Junction connector	Description	IP rating
a) Junction connector for extension cable	CM10-CR2P-*(DDK)	IP65
b) Junction connector for electromagnetic brake cable	CMV1-SP2S-*(DDK)	Wire size: M, L

3. Create the circuit in order to shut off by interlocking with the emergency stop switch.
4. There is no polarity in electromagnetic brake terminals (B1 and B2).
5. Do not use the 24 V DC interface power supply for the electromagnetic brake.
6. This connection is for the MR-J4 3-axis servo amplifier.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

4.2.2 HG-SR series servo motor

Refer to section 4.3 for the wires used for wiring.
(1) Connection with MR-J4 1-axis servo amplifier

Note 1. There is no polarity in electromagnetic brake terminals (B1 and B2).
2. Do not use the 24 V DC interface power supply for the electromagnetic brake.
3. Create the circuit in order to shut off by interlocking with the emergency stop switch.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

(2) Connection with MR-J4 multi-axis servo amplifier

Note 1. There is no polarity in electromagnetic brake terminals (B1 and B2).
2. Do not use the 24 V DC interface power supply for the electromagnetic brake.
3. Create the circuit in order to shut off by interlocking with the emergency stop switch.
4. This connection is for the MR-J4 3-axis servo amplifier.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

(3) Connectors

The connector fitting the servo motor is prepared as optional equipment. Refer to section 5 for details of the options. For types other than those prepared as optional equipment, refer to chapter 3.

Servo motor	Servo motor-side connectors		
	Encoder	Power supply	Electromagnetic brake
HG-SR52/HG-SR102/ HG-SR152		MS3102A18-10P	
HG-SR51/HG-SR81			
HG-SR202/HG-SR352/ HG-SR502	CMV1-R10P (DDK)	MS3102A22-22P	CMV1-R2P (DDK)
HG-SR121/HG-SR201/ HG-SR301			
HG-SR702		MS3102A32-17P	
HG-SR421			

The followings show the encoder connector, power connector, and electromagnetic brake connector viewed from the connection side.

Encoder connector CMV1-R10P

Power supply connector
MS3102A18-10P
MS3102A22-22P
MS3102A32-17P

$\begin{array}{lll} & 7 & (3 \\ \hline 10 & (6) & (2) \\ 9 & 5 & 1 \\ 8 & 4 & 1 \end{array}$	Terminal No.	Signal		Terminal No.	Signal		Terminal No.	Signal
	1	MR		A	U		1	$\begin{gathered} \hline \text { (Note) } \\ \text { B1 } \\ \hline \end{gathered}$
	2	MRR		B	V		2	(Note) B2
	3	-		C	W		Note. For	e motor
	4	BAT		D	(${ }^{(1)}$		with	
	5	LG			(PE)		elect	magneti
	6	-					c bra	e, supply
	7	5					elect	magneti
	8	P5					c bra	e power
	9	\bigcirc					(24 V	DC).
	10	SHD						is no
							polar	

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

4.3 Selection example of wires

POINT
Wires indicated in this section are separated wires. When using a cable for power line (U, V, and W) between the servo amplifier and servo motor, use a 600 V grade EP rubber insulated chloroprene sheath cab-tire cable (2PNCT). For selection of cables, refer to appendix 6.
To comply with the UL/CSA standard, use the wires shown in appendix 9 for wiring. To comply with other standards, use a wire that is complied with each standard.

- Selection condition of wire size is as follows.

Construction condition: One wire is constructed in the air.
Wire length: 30 m or less

The following diagram shows the wires used for wiring. Use the wires given in this section or equivalent.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

When using the 600 V Grade heat-resistant polyvinyl chloride insulated wire (HIV wire)
Selection example of wire size when using HIV wires is indicated below.

Table 4.1 Wire size selection example 2 (HIV wire)

Servo motor	Wires [mm²] (Note 1)	
	1) $\mathrm{U} / \mathrm{V} / \mathrm{W} /\left(\Theta_{=}\right.$	2) B1/B2
HG-MR053	0.75 (AWG 18) (Note 1)	0.5 (AWG 20) (Note 1)
HG-MR13		
HG-MR23		
HG-MR43		
HG-MR73		
HG-KR053		
HG-KR13		
HG-KR23		
HG-KR43		
HG-KR73		
HG-SR51	1.25 (AWG 16)	1.25 (AWG 16)
HG-SR81		
HG-SR121	2(AWG14)	
HG-SR201		
HG-SR301	3.5(AWG12)	
HG-SR421	5.5 (AWG 10) (Note 2)	
HG-SR52	1.25 (AWG 16)	
HG-SR102		
HG-SR152	2 (AWG 14)	
HG-SR202		
HG-SR352	3.5 (AWG 12)	
HG-SR502	5.5 (AWG 10) (Note 2)	
HG-SR702	8 (AWG 8) (Note 2)	

Note 1. It is for 10 m wire length. When fabricating an extension cable, use $1.25 \mathrm{~mm}^{2}$ (AWG16).
2. Refer to each servo amplifier instruction manual for crimp terminals and crimping tools used for connection with the servo amplifier.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

4.4 Servo amplifier terminal section

POINT
For the sizes of wires used for wiring, refer to section 4.3 .
These connectors are not available for MR-J4 1-axis servo amplifier of 5 kW or
more.

To wire to the servo amplifier, use connectors packed with the amplifier or optional connectors.
(1) Connectors
(a) MR-J4-10_ to MR-J4-100_

Table 4.2 Connector and applicable wire

Connector	Receptacle assembly	Applicable wire		Stripped length [mm]	Open tool	Manufacturer
		Wire size	Insulator OD			
CNP3	03JFAT-SAXGDK-H7.5	AWG 18 to 14	3.9 mm or less	9	J-FAT-OT	JST

(b) MR-J4-200_/MR-J4-350_

Table 4.3 Connector and applicable wire

Connector	Receptacle assembly	Applicable wire		Stripped length $[\mathrm{mm}]$	Open tool	Manufacturer
		Wire size	Insulator OD			
CNP3	03JFAT-SAXGFK-XL	AWG 16 to 10	4.7 mm or less	11.5	JST	

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

(c) MR-J4W_-_B

Note. This figure shows the MR-J4 3-axis servo amplifier.

Table 4.4 Connector and applicable wire

Connector	Receptacle assembly	Applicable wire size	Stripped length [mm]	Open tool	Manufacturer
CNP3A					
CNP3B CNP3C	04JFAT-SAGG-G-KK	AWG 18 to 14	9	J-FAT-OT-EXL	JST

(2) Cable connection procedure
(a) Cable making

Refer to table 4.2, 4.3, and 4.4 for stripped length of cable insulator. The appropriate stripped length of cables depends on their type, etc. Set the length considering their status.

Twist strands slightly and straighten them as follows.

4. CONNECTION OF SERVO AMPLIFIER AND SERVO MOTOR

(b) Inserting wire

Insert the open tool as follows and push down it to open the spring. While the open tool is pushed down, insert the stripped wire into the wire insertion hole. Check the insertion depth so that the cable insulator does not get caught by the spring.
Release the open tool to fix the wire. Pull the wire lightly to confirm that the wire is surely connected. The following shows a connection example of the CNP3 connector for 2 kW and 3.5 kW of MR-J4 1axis servo amplifier.

MEMO

\qquad

5. WIRING OPTION

| Before connecting any option, turn off the power and wait for 15 minutes or more |
| :--- | :--- |
| until the charge lamp turns off. Then, confirm that the voltage between P+and $\mathrm{N}-$ |
| is safe with a voltage tester and others. Otherwise, an electric shock may occur. |
| In addition, when confirming whether the charge lamp is off or not, always confirm |
| it from the front of the servo amplifier. |

! CAUTION OUse specified auxiliary equipment and options. Otherwise, it may cause a malfunction or fire.

5.1 Cable/connector sets

POINT

- The IP rating indicated is the cable's or connector's protection against ingress of dust and water when the cable or connector is connected to a servo amplifier or servo motor. If the IP rating of the cable, connector, servo amplifier and servo motor vary, the overall IP rating depends on the lowest IP rating of all components.

Purchase the cable and connector options indicated in this section.

5. WIRING OPTION

5.1.1 Combinations of cable/connector sets

(1) HG-MR series/HG-KR series servo motor

Note 1. Connectors for 3.5 kW or less. For 5 kW or more, it is a terminal block.
2. This connection is for the MR-J4 3-axis servo amplifier.
3. Refer to Appendix 7 for the crimp connector for CNP3_.
(2) HG-SR series servo motor

Note 1. Connectors for 3.5 kW or less. For 5 kW or more, it is a terminal block.
2. This connection is for the MR-J4 3-axis servo amplifier.
3. Refer to Appendix 7 for the crimp connector for CNP3_.

5. WIRING OPTION

5.1.2 Cable and connector list

No.	Name	Model	Description	Remarks
1)	Motor power supply cable	MR- PWS1CBL_M-A1-L (Note) Cable length: 2/5/10 m		IP65 Load-side lead EN compliant
2)	Servo motor power cable	MR- PWS1CBL_M-A1-H (Note) Cable length: 2/5/10 m	Refer to section 5.3 for details.	IP65 Load-side lead Long bending life EN compliant
3)	Servo motor power cable	MR- PWS1CBL_M-A2-L (Note) Cable length: 2/5/10 m	Power supply connector HG-MR series HG-KR series Refer to section 5.3 for details.	IP65 Opposite to load-side lead EN compliant
4)	Servo motor power cable	MR- PWS1CBL_M-A2-H (Note) Cable length: 2/5/10 m		IP65 Opposite to load-side lead Long bending life EN compliant
5)	Servo motor power cable	MR- PWS2CBL03M -A1-L (Note) Cable length: 0.3 m	Refer to section 5.3 for details.	IP55 Load-side lead EN compliant
6)	Servo motor power cable	MR- PWS2CBL03M -A2-L (Note) Cable length: 0.3 m	Refer to section 5.3 for details.	IP55 Opposite to load-side lead EN compliant
7)	Electromagnetic brake cable	MR- BKS1CBL_M- A1-L Cable length: $2 / 5 / 10 \mathrm{~m}$	Refer to section 5.4 for details.	IP65 Load-side lead
8)	Electromagnetic brake cable	MR- BKS1CBL_M- A1-H Cable length: $2 / 5 / 10 \mathrm{~m}$		IP65 Load-side lead Long bending life
9)	Electromagnetic brake cable	MR- BKS1CBL_M-A2-L Cable length: $2 / 5 / 10 \mathrm{~m}$	Refer to section 5.4 for details.	IP65 Opposite to load-side lead
10)	Electromagnetic brake cable	MR- BKS1CBL_M-A2-H Cable length: $2 / 5 / 10 \mathrm{~m}$		IP65 Opposite to load-side lead Long bending life

5. WIRING OPTION

No.	Name	Model	Description	Remarks
11)	Electromagnetic brake cable	MR- BKS2CBL03M- A1-L Cable length: $0.3 \text { m }$	Electromagnetic brake connector HG-MR series HG-KR series Refer to section 5.4 for details.	IP55 Load-side lead
12)	Electromagnetic brake cable	MR- BKS2CBL03M- A2-L Cable length: 0.3 m	Refer to section 5.4 for details.	IP55 Opposite to loadside lead
13)	Encoder cable	MR- J3ENCBL_M- A1-L (Note) Cable length: $2 / 5 / 10 \mathrm{~m}$		IP65 Opposite to loadside lead
14)	Encoder cable	MR- J3ENCBL_M- A1-H (Note) Cable length: $2 / 5 / 10 \mathrm{~m}$	Refer to section 5.2 (1) for details.	IP65 Load-side lead Long bending life
15)	Encoder cable	MR- J3ENCBL_M-A2-L (Note) Cable length: 2/5/10 m		IP65 Opposite to loadside lead
16)	Encoder cable	MR- J3ENCBL_M- A2-H (Note) Cable length: $2 / 5 / 10 \mathrm{~m}$	Refer to section 5.2 (1) for details.	IP65 Opposite to loadside lead Long bending life
17)	Encoder cable	MR- J3JCBL03M- A1-L (Note) Cable length: 0.3 m	Refer to section 5.2 (3) for details.	IP20 Load-side lead
18)	Encoder cable	MR- J3JCBL03M- A2-L (Note) Cable length: $0.3 \text { m }$	Refer to section 5.2 (3) for details.	IP20 Opposite to load-side lead
19)	Encoder cable	MR-EKCBL_ML Cable length: 20/30 m	HG-MR/HG-KR series Refer to section 5.2 (2) for details.	IP20
20)	Encoder cable	MR-EKCBL_MH Cable length: 20/30/40/50 m		IP20 Long bending life
21)	Encoder connector set	MR-ECNM	 HG-MR/HG-KR series Refer to section 5.2 (2) for details.	IP20

No.	Name	Model	Description	Remarks
22)	Encoder cable	MR- J3JSCBL03M- A1-L (Note) Cable length: 0.3 m	Refer to section 5.2 (4) for details.	IP65 Load-side lead
23)	Encoder cable	MR- J3JSCBL03M- A2-L (Note) Cable length: 0.3 m	Refer to section 5.2 (4) for details.	IP65 Load-side lead
24)	Encoder cable	MR- J3ENSCBL_M- L (Note) Cable length: 2/5/10/20/30 m	HG-KR/HG-MR/HG-SR series Refer to section 5.2 (5) for details.	IP67 Standard bending life
25)	Encoder cable	MR- J3ENSCBL_M- H (Note) Cable length: 2/5/10/20/30/40 150 m		IP67 Long bending life
26)	Encoder connector set	MR-J3SCNS	두ㄴㅔㅛ HG-KR/HG-MR/HG-SR series Refer to section 5.2 (5) for details.	IP67
27)	Power connector set	MR-PWCNS4	Plug: CE05-6A18-10SD-D-BSS Cable clamp: CE3057-10A-1-D HG-SR51/HG-SR81/ HG-SR52/HG-SR102/ HG-SR152 Cable OD: 10.5 mm to 14.1 mm	IP67 EN compliant
28)	Power connector set	MR-PWCNS5	Plug: CE05-6A22-22SD-D-BSS \square Cable clamp: CE3057-12A-1-D HG-SR121/HG-SR201/ (DDK) HG-SR301/ Applicable cable HG-SR202/HG-SR352/ Applicable wire size: $5.5 \mathrm{~mm}^{2}$ (AWG 10) to HG-SR502 Cable OD: 12.5 mm to 16 mm	IP67 EN compliant
29)	Power connector set	MR-PWCNS3	Plug: CE05-6A32-17SD-D-BSS \square Cable clamp: CE3057-20A-1-D HG-SR421/ (DDK) HG-SR702 Applicable cable Applicable wire size: $14 \mathrm{~mm}^{2}$ (AWG 6) to $22 \mathrm{~mm}^{2}$ (AWG 4) Cable OD: 22 mm to 23.8 mm	$\begin{aligned} & \hline \text { IP67 } \\ & \text { EN } \\ & \text { compliant } \end{aligned}$
30)	Electromagnetic brake connector set	MR-BKCNS1 (Note)	Straight plug: CMV1-SP2S-L Socket contact: CMV1-\#22BSC-S2-100 (DDK) HG-SR series	IP67
31)	Electromagnetic brake connector set	MR-BKCNS1A (Note)	Angle plug: CMV1-AP2S-L Socket contact: CMV1-\#22BSC-S2-100 (DDK)	IP67
32)	Electromagnetic brake connector set	MR-BKCNS2	Straight plug: CMV1S-SP2S-L GD周 Socket contact: CMV1-\#22BSC-S2-100 HG-SR series (DDK)	IP67

5．WIRING OPTION

No．	Name	Model	Description		Remarks
33）	Electromagnetic brake connector set	MR－BKCNS2A	Angle plug：CMV1S－AP2S－L Socket contact：CMV1－\＃22BSC－S2－100 （DDK）		IP67
34）	Encoder Connector set	MR－ENCNS2	떼Tull HG－SR series Refer to section 5.2 （5）for details．	End	IP67
35）	Encoder Connector set	$\begin{array}{\|l} \hline \text { MR-J3SCNSA } \\ \text { (Note) } \end{array}$	氏40 HG－SR series Refer to section 5.2 （5）for details．	$\frac{810}{010}$	IP67
36）	Encoder Connector set	MR－ENCNS2A	和可四 HG－SR series Refer to section 5.2 （5）for details．		IP67

Note．The cable and the connector set may contain different connectors but still usable．

5.2 Encoder cable/connector sets

(1) MR-J3ENCBL_M-_-_

These cables are encoder cables for the HG-MR/HG-KR series servo motors. The numbers in the cable length field of the table indicate the symbol filling the underline "_" in the cable model. The cables of the lengths with the symbols are available.

Cable model	Cable length			IP rating	Bending life	Application
	2 m	5 m	10 m			
MR-J3ENCBL_M-A1-L	2	5	10	IP65	Standard	Load-side lead for HG-MR/HG-KR servo motor
MR-J3ENCBL_M-A1-H	2	5	10	IP65	Long bending life	
MR-J3ENCBL_M-A2-L	2	5	10	IP65	Standard	Opposite to load-side lead for HG-MR/HG-KR servo motor
MR-J3ENCBL_M-A2-H	2	5	10	IP65	Long bending life	

(a) Connection of servo amplifier and servo motor

Note. This connection is for the MR-J4 3-axis servo amplifier.

(b) Cable internal wiring diagram

(2) MR-EKCBL_M-_

Incorrect setting will result in [AL. 16 Encoder initial communication error 1].

The servo amplifier and the servo motor cannot be connected by these cables alone. The servo motorside encoder cable (MR-J3JCBL03M-_-L) is required.
The numbers in the cable length field of the table indicate the symbol filling the underline "_" in the cable model. The cables of the lengths with the symbols are available.

Cable model	Cable length				IP rating	Bending life	Application
	20 m	30 m	40 m	50 m			
MR-EKCBL_M-L	20	$\begin{gathered} (\text { Note }) \\ 30 \end{gathered}$,	\}	IP20	Standard	For HG-MR/HG-KR servo motor Use in combination with MR-J3JCBL03M-_-L.
MR-EKCBL_M-H	20	$\begin{array}{\|c} \hline(\text { Note }) \\ 30 \end{array}$	(Note) 40	(Note) 50	IP20	Long bending life	

Note. Four-wire type cable

5. WIRING OPTION

(a) Connection of servo amplifier and servo motor

Note. This connection is for the MR-J4 3-axis servo amplifier.

Cable model	1) CN2, CN2A, CN2B, and CN2C side connector	2) Junction connector
MR-EKCBL_M-L		Housing: 1-172161-9 Connector pin: 170359-1 Crimping tool: 91529-1 (TE Connectivity or equivalent) Cable clamp: MTI-0002 (Toa Electric Industries)
MR-EKCBL_M-H	View seen from wiring side. (Note) Note. Keep open the pins shown with \qquad Especially, pin 10 is provided for manufacturer adjustment. If it is connected with any other pin, the servo amplifier cannot operate normally.	1 2 3 MR MRR BAT 4 5 6 MD MDR CONT 7 8 9 P5 LG SHD View seen from wiring side.

(b) Internal wiring diagram

MR-EKCBL20M-L

CN2, CN2A, CN2B, and CN2C side connector			Junction connector	
P5	1		7	P5
LG	2	$1 \cdot 3$	8	LG
MR	3	,	1	MR
MRR	4	!	2	MRR
BAT	9		3	BAT
SD	Plate	(No	9	SHD

MR-EKCBL2OM-H

MR-EKCBL30M-L

MR-EKCBL30M-H MR-EKCBL40M-H MR-EKCBL50M-H

Note. Always make connection for use in an absolute position detection system. Wiring is not necessary for use in an incremental system.

When fabricating the cable, use the wiring diagram corresponding to the length indicated below.

Cable bending life	Applicable wiring diagram	
	Less than 30 m	30 m to 50 m
Standard	MR-EKCBL20M-L	MR-EKCBL30M-L
Long bending life	MR-EKCBL20M-H	MR-EKCBL30M-H
		MR-EKCBL40M-H
		MR-EKCBL50M-H

5. WIRING OPTION

(c) When fabricating the encoder cable

When fabricating the cable, prepare the following parts, and fabricate it according to the wiring diagram in (b). Refer to section 5.5 for the specifications of the cable to use.

Parts	Description	
Connector set	MR-ECNM CN2, CN2A, CN2B, and CN2C side connector Receptacle: 36210-0100PL Shell kit: 36310-3200-008 (3M) or Connector set: 54599-1019 (Molex)	Encoder-side connector Housing: 1-172161-9 Connector pin: 170359-1 (TE Connectivity or equivalent) Cable clamp: MTI-0002 (Toa Electric Industries)

(3) MR-J3JCBL03M-_-L

The servo amplifier and the servo motor cannot be connected by these cables alone. The servo motorside encoder cable (MR-EKCBL_M-_) is required.

Cable model	Cable length	IP rating	Bending life	Application
MR-J3JCBL03M-A1-L				Load-side lead for HG-MR/HG-KR servo motor Use in combination with MR- EKCBL_M-_.
MR-J3JCBL03M-A2-L	0.3 m	IP20	Standard	Opposite to load-side lead for HG- MR/HG-KR servo motor Use in combination with MR- EKCBL_M-_.

(a) Connection of servo amplifier and servo motor

Note. This connection is for the MR-J4 3-axis servo amplifier.

Cable model	1) Junction connector	2) Encoder-side connector
MR-J3JCBL03M-A1-L	Housing: 1-172169-9 Contact: 1473226-1 Cable clamp: 316454-1 Crimping tool: 91529-1 (TE Connectivity)	Connector: 2174053-1 Crimping tool for ground clip: 1596970-1 Crimping tool for receptacle contact: 1596847-1 (TE Connectivity)
MR-J3JCBL03M-A2-L	BAT MRR MR 6 5 4 CONT MDR MD 9 8 7 SHD LG P5 View seen from wiring side.	View seen from wiring side.

(b) Internal wiring diagram

Junction connector			Encoder-side connector		
			,		
P5	7	T	1	3	P5
LG	8	!	1	6	LG
MR	1		1	5	MR
MRR	2		-	4	MRR
MD	4		,	8	MD
MDR	5		1	7	MDR
BAT	3		\pm	2	BAT
CONT	6			1	CONT
SHD	9			9	SHD

5. WIRING OPTION

(4) MR-J3JSCBL03M-_-L

The servo amplifier and the servo motor cannot be connected by these cables alone. The servo motorside encoder cable (MR-J3ENSCBL_M-_) is required.

Cable model	Cable length	IP rating	Bending life	Application
MR-J3JSCBL03M-A1-L	0.3 m	IP65	Standard	For HG-KR/HG-MR servo motor Load-side lead Use in combination with MR-J3ENSCBL_M-..
MR-J3JSCBL03M-A2-L	0.3 m	1 66	Standard	For HG-KR/HG-MR servo motor Opposite to load-side lead Use in combination with MR-J3ENSCBL_M-..

(a) Connection of servo amplifier and servo motor

Note 1. This connection is for the MR-J4 3-axis servo amplifier.
2. For details of this cable, refer to (5) in this section.

(b) Internal wiring diagram

Junction connector			Encoder-side connector		
P5	8	T		3	P5
LG	5	!	1	6	LG
MR	1	1	11	5	MR
MRR	2	'	1	4	MRR
	6		1	8	
	7		1 1	7	
BAT	4		1	2	BAT
CONT	3			1	CONT
SHD	10			9	SHD

(5) MR-J3ENSCBL_M-

These cables are encoder cables for the HG-MR/HG-KR/HG-SR series servo motors. The numbers in the cable length field of the table indicate the symbol filling the underline "_" in the cable model. The cables of the lengths with the symbols are available.

Cable model	Cable length							IP rating	Bending life	Application
	2 m	5 m	10 m	20 m	30 m	40 m	50 m			
MR-J3ENSCBL_M-L	2	5	10	20	30		>	IP67	Standard	For HG-MR/HG-KR/HG-SR series servo motor
MR-J3ENSCBL_M-H	2	5	10	20	30	40	50	IP67	Long bending life	

(a) Connection of servo amplifier and servo motor

Note. This connection is for the MR-J4 3-axis servo amplifier.

5. WIRING OPTION

Cable model	1) CN2, CN2A, CN2B, and CN2C side connector	2) Encoder-side connector						
$\begin{aligned} & \hline \text { MR-J3ENSCBL_M- } \\ & \text { L } \end{aligned}$	Receptacle: 36210-0100PL Shell kit: 36310-3200-008 (3M)	Cable length	Bending life	Plug (DDK)				
				Straight plug	Socket contact			
	View seen from wiring side. (Note) or Connector set: 54599-1019 (Molex)	10 m or shorter	Long bending life Standard	CMV1-SP10S-M1	CMV1-\#22ASC-C1-100 Applicable wire size: AWG 24 to 20 Crimping tool:357J-53162T			
		20 m or longer	Long bending life		CMV1-\#22ASC-C2-100 Applicable wire size: AWG 28 to 24 Crimping tool:357J-53163T			
			Standard	CMV1-SP10S-M2				
		View seen from wiring side. (Note) Note. Keep open the pins shown with . \qquad						
$\begin{aligned} & \text { MR-J3ENSCBL_M- } \\ & \mathrm{H} \end{aligned}$	View seen from wiring side. (Note) Note. Keep open the pins shown with \qquad Especially, pin 10 is provided for manufacturer adjustment. If it is connected with any other pin, the servo amplifier cannot operate normally.							

(b) Cable internal wiring diagram

MR-J3ENSCBL2M-L
MR-J3ENSCBL5M-L
MR-J3ENSCBL10M-L
MR-J3ENSCBL2M-H
MR-J3ENSCBL5M-H
MR-J3ENSCBL20M-L
MR-J3ENSCBL10M-H

CN2, CN2A, CN2B, and Encoder-side CN2C side connector connector

MR-J3ENSCBL20M-H
MR-J3ENSCBL30M-H
MR-J3ENSCBL40M-H MR-J3ENSCBL50M-H

Note. Always make connection for use in an absolute position detection system. Wiring is not necessary for use in an incremental system.

5. WIRING OPTION

(c) When fabricating the encoder cable

When fabricating the cable, prepare the following parts, and fabricate it according to the wiring diagram in (b). Refer to section 5.5 for the specifications of the used cable.

Parts (Connector set)	Description	
	Servo amplifier side connector	Encoder-side connector (DDK)
MR-J3SCNS (one-touch connection type) (Note)	Receptacle: 36210-0100PLShell kit: 36310-3200-008(3M) orConnector set: 54599-1019(Molex)	 Straight plug: CMV1-SP10S-M2 Socket contact: CMV1-\#22ASC-S1-100 Applicable wire size: AWG 20 or less
MR-ENCNS2 (screw type) (Note)		Straight plug: CMV1S-SP10S-M2 Socket contact: CMV1-\#22ASC-S1-100 Applicable wire size: AWG 20 or less
MR-J3SCNSA (one-touch connection type) (Note)		Angle plug: CMV1-AP10S-M2 Socket contact: CMV1-\#22ASC-S1-100 Applicable wire size: AWG 20 or less
MR-ENCNS2A (screw type) (Note)		Angle plug: CMV1S-AP10S-M2 Socket contact: CMV1-\#22ASC-S1-100 Applicable wire size: AWG 20 or less

[^1]
5. WIRING OPTION

5.3 Servo motor power cable

These cables are servo motor power cables for the HG-MR/HG-KR series servo motors.
The numbers in the cable length field of the table indicate the symbol filling the underline "_" in the cable model. The cables of the lengths with the symbols are available.
Refer to section 4.2.1 for wiring.

Cable model	Cable length				IP rating	Bending life	Application
	0.3 m	2 m	5 m	10 m			
MR-PWS1CBL_M-A1-L		2	5	10	IP65	Standard	Load-side lead for HG-MR/HG-KR servo motor
MR-PWS1CBL_M-A2-L		2	5	10	IP65	Standard	Opposite to load-side lead for HG-MR/HG-KR servo motor
MR-PWS1CBL_M-A1-H		2	5	10	IP65	Long bending life	Load-side lead for HG-MR/HG-KR servo motor
MR-PWS1CBL_M-A2-H	Σ	2	5	10	IP65	Long bending life	Opposite to load-side lead for HG-MR/HG-KR servo motor
MR-PWS2CBL03M-A1-L	03				IP55	Standard	Load-side lead for HG-MR/HG-KR servo motor
MR-PWS2CBL03M-A2-L	03				IP55	Standard	Opposite to load-side lead for HG-MR/HG-KR servo motor

(1) Connection of servo amplifier and servo motor

Note. This connection is for the MR-J4 3-axis servo amplifier.

Cable model	1) Servo motor power-side connector	
MR-PWS1CBL_M-A1-L	Connector: KN4FT04SJ1-R Hood, socket insulator Bushing, ground nut Contact: ST-TMH-S-C1B-100-(A534G) Crimping tool: CT160-3-TMH5B (JAE)	View seen from wiring side.
MR-PWS1CBL_M-A2-L		
MR-PWS1CBL_M-A1-H		
MR-PWS1CBL_M-A2-H		
MR-PWS2CBL03M-A1-L	Connector: KN4FT04SJ2-R Hood, socket insulator Bushing, ground nut Contact: ST-TMH-S-C1B-100-(A534G) Crimping tool: CT160-3-TMH5B (JAE)	
MR-PWS2CBL03M-A2-L		

(2) Internal wiring diagram

Note. These are not shielded cables.

5.4 Electromagnetic brake cable

These cables are electromagnetic brake cables for the HG-MR/HG-KR series servo motors. The numbers in the cable length field of the table indicate the symbol filling the underline "_" in the cable model. The cables of the lengths with the symbols are available.
Refer to section 4.2.1 for wiring.

Cable model	Cable length				IP rating	Bending life	Application
	0.3 m	2 m	5 m	10 m			
MR-BKS1CBL_M-A1-L		2	5	10	IP65	Standard	Load-side lead for HG-MR/HG-KR servo motor
MR-BKS1CBL_M-A2-L		2	5	10	IP65	Standard	Opposite to load-side lead for HG-MR/HG-KR servo motor
MR-BKS1CBL_M-A1-H	y	2	5	10	IP65	Long bending life	Load-side lead for HG-MR/HG-KR servo motor
MR-BKS1CBL_M-A2-H	\searrow	2	5	10	IP65	Long bending life	Opposite to load-side lead for HG-MR/HG-KR servo motor
MR-BKS2CBL03M-A1-L	03				IP55	Standard	Load-side lead for HG-MR/HG-KR servo motor
MR-BKS2CBL03M-A2-L	03				IP55	Standard	Opposite to load-side lead for HG-MR/HG-KR servo motor

5. WIRING OPTION

(1) Connection of power supply for electromagnetic brake and servo motor

Cable model	1) Connector for electromagnetic brake	
MR-BKS1CBL_M-A1-L	Connector: JN4FT02SJ1-R Hood, socket insulator Bushing, ground nut Contact: ST-TMH-S-C1B-100-(A534G) Crimping tool: CT160-3-TMH5B (JAE)	View seen from wiring side.
MR-BKS1CBL_M-A2-L		
MR-BKS1CBL_M-A1-H		
MR-BKS1CBL_M-A2-H		
MR-BKS2CBL03M-A1-L	Connector: JN4FT02SJ2-R Hood, socket insulator Bushing, ground nut	
MR-BKS2CBL03M-A2-L	Contact: ST-TMH-S-C1B-100-(A534G) Crimping tool: CT160-3-TMH5B (JAE)	

(2) Internal wiring diagram

Note. These are not shielded cables.

5.5 Wires for option cables

When fabricating a cable, use the wire models given in the following table or equivalent.

Table 5.1 Wires for option cables

Type	Model	Length [m]	Core size	Number of cores	Characteristics of one core			$\begin{gathered} \text { (Note 2) } \\ \text { Cable OD } \\ {[\mathrm{mm}]} \end{gathered}$	Wire model (Manufacturer)
					Structure [Wires/mm]	Conductor resistance [$\Omega / \mathrm{km}]$	(Note 1) Insulator OD d [mm]		
	MR-J3ENCBL_M- A1-L MR-J3ENCBL_M- A2-L	2 to 10	AWG 22	$\left\|\begin{array}{c} 6 \\ (3 \text { pairs }) \end{array}\right\|$	7/0.26	$\begin{aligned} & 53 \text { or } \\ & \text { less } \end{aligned}$	1.18	7.1	(Note 3) VSVP 7/0.26 (AWG \#22 or equivalent)-3P KB-1655-2 (Bando Densen)
	MR-J3ENCBL_M- A1-H MR-J3ENCBL_M- A2-H	2 to 10	AWG 22	$\left\|\begin{array}{c} 6 \\ (3 \text { pairs }) \end{array}\right\|$	70/0.08	$\begin{aligned} & 56 \text { or } \\ & \text { less } \end{aligned}$	1.17	7.1	(Note 3) TPE • SVP 70/0.08 (AWG \#22 or equivalent)-3P KB-2237-2 (Bando Densen)
	MR-J3JCBL03M- A1-L MR-J3JCBL03M- A2-L	0.3	AWG 26	$\left\lvert\, \begin{gathered} 8 \\ \text { (4 pairs) } \end{gathered}\right.$	30/0.08	$\begin{gathered} 233 \text { or } \\ \text { less } \end{gathered}$	1.2	7.1 ± 0.3	T/2464-1061/IIA-SB 4P×26AWG (Taiyo Cabletec)
	MR-EKCBL_M-L	2 to 10	AWG 28	4 (2 pairs) 2	7/0.127	232 or less 28.7 or less	1.18 1.50	7.0	(Note 3) 20276 composite 6-core shielded cable Ban-gi-shi-16395-1 (Bando Densen)
		20-30	AWG 23	$\left\|\begin{array}{c} 12 \\ \text { (6 pairs) } \end{array}\right\|$	12/0.18	$\begin{gathered} 63.6 \text { or } \\ \text { less } \end{gathered}$	1.2	8.2 ± 0.3	(Note 3) 20276 VSVPAWG\#23×6P KB-0492 (Bando Densen)
	MR-EKCBL_M-H	2 to 10	$0.2 \mathrm{~mm}^{2}$	$\begin{gathered} 12 \\ (6 \text { pairs }) \end{gathered}$	40/0.08	105 or less	0.88	7.2	(Note 3) A14B2339 6P (Junkosha)
		20	AWG 24	$\left\lvert\, \begin{gathered} 12 \\ \text { (6 pairs) } \end{gathered}\right.$	40/0.08	$\begin{gathered} 105 \text { or } \\ \text { less } \end{gathered}$	0.88	7.2	(Note 3) TPE • SVP 40/0.08 (AWG \#24 or equivalent)-6P KB-1928-2 (Bando Densen)
		30 to 50	AWG 24	14 (7 pairs)	40/0.08	$\begin{aligned} & 105 \text { or } \\ & \text { less } \end{aligned}$	0.88	8.0	(Note 3) TPE • SVP 40/0.08 (AWG \#24 or equivalent)-7P KB-1929-2 (Bando Densen)
	MR-J3JSCBL03M- A1-L MR-J3JSCBL03M- A2-L	0.3	AWG 26	$\begin{gathered} 8 \\ \text { (4 pairs) } \end{gathered}$	7/0.16	146 or less	1.0	7.1 ± 0.3	(Note 3) VSVP 7/0.16 (AWG \#26 or equivalent)-4P Ban-gi-shi-16822 (Bando Densen)
	MR-J3ENSCBL M-L	2 to 10	AWG 22	$\begin{gathered} 6 \\ \text { (3 pairs) } \end{gathered}$	7/0.26	$\begin{aligned} & 53 \text { or } \\ & \text { less } \end{aligned}$	1.18	7.1	(Note 3) VSVP 7/0.26 (AWG \#22 or equivalent)-3P KB-1655-2 (Bando Densen)
		20/30	AWG 23	12 (6 pairs)	12/0.18	$\begin{gathered} 63.3 \text { or } \\ \text { less } \end{gathered}$	1.2	8.2 ± 0.3	(Note 3) 20276 VSVPAWG\#23×6P KB-0492 (Bando Densen)
	MR-J3ENSCBL_ M-H	2 to 10	AWG 22	$\left\|\begin{array}{c} 6 \\ \text { (3 pairs) } \end{array}\right\|$	70/0.08	$\begin{aligned} & 56 \text { or } \\ & \text { less } \end{aligned}$	1.17	7.1	(Note 3) TPE • SVP 70/0.08 (AWG \#22 or equivalent)-3P KB-2237-2 (Bando Densen)
		20 to 50	AWG 24	12 (6 pairs)	40/0.08	$\begin{gathered} 105 \text { or } \\ \text { less } \end{gathered}$	0.88	7.2	(Note 3) TPE • SVP 40/0.08 (AWG \#24 or equivalent)-6P KB-1928-2 (Bando Densen)

Type	Model	Length [m]	Core size	Number of cores	Characteristics of one core			(Note 2) Cable OD [mm]	Wire model (Manufacturer)
					Structure [Wires/mm]	$\begin{array}{\|c} \text { Conductor } \\ \text { resistance } \\ {[\Omega / \mathrm{km}]} \end{array}$	$\begin{array}{\|c\|} \hline \text { (Note 1) } \\ \text { Insulator } \\ \text { OD } \\ d[\mathrm{~mm}] \\ \hline \end{array}$		
	MR-PWS1CBL M-A1-L MR-PWS1CBL M-A2-L	2 to 10 2 to 10	AWG 18	4	34/0.18	$\begin{gathered} 21.8 \\ \text { or less } \end{gathered}$	1.71	6.2 ± 0.3	(Note 4) HRZFEV-A (CL3) AWG 184 cores (Dyden)
	$\begin{array}{\|l} \hline \begin{array}{l} \text { MR-PWS1CBL_ } \\ \text { M-A1-H } \end{array} \\ \hline \begin{array}{l} \text { MR-PWS1CBL_ } \\ \text { M-A2-H } \end{array} \\ \hline \end{array}$	2 to 10 2 to 10	$\begin{gathered} \text { AWG } 19 \\ \left(0.75 \mathrm{~mm}^{2}\right) \end{gathered}$	4	150/0.08	$\begin{gathered} 29.1 \\ \text { or less } \end{gathered}$	1.63	5.7 ± 0.5	(Note 4) RMFES-A (CL3X) AWG 194 cores (Dyden)
	MR- PWS2CBL03M- A1-L	0.3	AWG 19	4	30/0.18	$\begin{gathered} 25.8 \\ \text { or less } \end{gathered}$	1.64	-	(Note 3, 5) J11B2330 UL10125 (Junkosha)
	MR-PWS2CBL03M-A2-L	0.3							
	$\begin{aligned} & \text { MR-BKS1CBL_ } \\ & \text { M-A1-L } \end{aligned}$	2 to 10	AWG 20	2	21/0.18	$\begin{gathered} 34.6 \\ \text { or less } \end{gathered}$	1.35	4.7 ± 0.1	(Note 4) HRZFEV-A (CL3) AWG 202 cores (Dyden)
	$\begin{aligned} & \text { MR-BKS1CBL_ } \\ & \text { M-A2-L } \end{aligned}$	2 to 10							
	$\begin{aligned} & \text { MR-BKS1CBL_ } \\ & \text { M-A1-H } \end{aligned}$	2 to 10	AWG 20	2	110/0.08	$\begin{gathered} 39.0 \\ \text { or less } \end{gathered}$	1.37	4.5 ± 0.3	(Note 4) RMFES-A (CL3X) AWG 202 cores (Dyden)
	$\begin{aligned} & \text { MR-BKS1CBL_ } \\ & \text { M-A2-H } \end{aligned}$	2 to 10							
	$\begin{array}{\|l\|} \hline \text { MR- } \\ \text { BKS2CBL03M- } \\ \text { A1-L } \\ \hline \end{array}$	0.3	AWG 20	2	19/0.203	$\begin{gathered} 32.0 \\ \text { or less } \end{gathered}$	1.42	-	(Note 3, 5) J11B2331 UL10125 (Junkosha)
	MR- BKS2CBL03M- A2-L	0.3							

Note 1. The following shows the detail of d.

2. Standard OD. Max. OD is about 10% greater.
3. Purchase from Toa Electric Industry Co. Ltd., Nagoya Branch
4. Purchase from Taisei Co., Ltd.
5. These models consist with solid wires. Specify the color, separately.

MEMO
\qquad

6. HG-MR SERIES/HG-KR SERIES

6. HG-MR SERIES/HG-KR SERIES

This chapter provides information on the servo motor specifications and characteristics. When using the HG-MR/HG-KR series servo motor, always read the Safety Instructions in the beginning of this manual and chapters 1 to 5 , in addition to this chapter.

6.1 Model code definition

The following describes what each block of a model name indicates. Not all combinations of the symbols are available.

Note 1. The special shaft applies to the standard servo motor and servo motor with an electromagnetic brake. However, the key shaft (with key) also applies to the servo motor with flange-mounting shaft output type reduction gear for precision application.
2. The servo motors with an oil seal are available as optional products. For details, contact your local sales office.
6.2 Combination list of servo motors and servo amplifiers

Servo motor	Servo amplifier		
	MR-J4 1-axis	MR-J4 2-axis	MR-J4 3-axis
HG-MR053	MR-J4-10	$\begin{aligned} & \text { MR-J4W2-22B } \\ & \text { MR-J4W2-44B } \end{aligned}$	$\begin{aligned} & \text { MR-J4W3-222B } \\ & \text { MR-J4W3-444B } \end{aligned}$
HG-MR13			
HG-MR23	MR-J4-20		
HG-MR43	MR-J4-40_	$\begin{gathered} \hline \text { MR-J4W2-44B } \\ \text { MR-J4W2-77B } \\ \text { MR-J4W2-1010B } \end{gathered}$	MR-J4W3-444B
HG-MR73	MR-J4-70_	$\begin{gathered} \text { MR-J4W2-77B } \\ \text { MR-J4W2-1010B } \end{gathered}$	
HG-KR053	MR-J4-10	$\begin{aligned} & \text { MR-J4W2-22B } \\ & \text { MR-J4W2-44B } \end{aligned}$	$\begin{aligned} & \text { MR-J4W3-222B } \\ & \text { MR-J4W3-444B } \end{aligned}$
HG-KR13			
HG-KR23	MR-J4-20		
HG-KR43	MR-J4-40_	$\begin{aligned} & \hline \text { MR-J4W2-44B } \\ & \text { MR-J4W2-77B } \\ & \text { MR-J4W2-1010B } \end{aligned}$	MR-J4W3-444B
HG-KR73	MR-J4-70_	$\begin{gathered} \text { MR-J4W2-77B } \\ \text { MR-J4W2-1010B } \end{gathered}$	

6. HG-MR SERIES/HG-KR SERIES

6.3 Standard specifications

6.3.1 Standard specifications list

Item			HG-MR series (ultra-low inertia/small capacity)					HG-KR series (low inertia/small capacity)				
			053(B)	13(B)	23(B)	43(B)	73(B)	053(B)	13(B)	23(B)	43(B)	73(B)
Power supply capacity			Refer to "Power supply equipment capacity and generated loss of servo amplifiers" in Servo Amplifier Instruction Manual.									
Continuous running duty (Note 1)	Rated output [kW]		0.05	0.1	0.2	0.4	0.75	0.05	0.1	0.2	0.4	0.75
	Rated torque [$\mathrm{N} \cdot \mathrm{m}$]		0.16	0.32	0.64	1.3	2.4	0.16	0.32	0.64	1.3	2.4
Maximum torque (Note 10) [N•m]			0.48	0.95	1.9	3.8	7.2	0.56	1.1	2.2	4.5	8.4
Rated speed (Note 1) [r/min]			3000					3000				
Maximum speed (Note 10)		[r/min]	6000					6000				
Instantaneous permissible speed (Note 10)			6900					6900				
Power rate at continuous rated torque	Standard [kW/s]		15.6	33.8	46.9	114.2	97.3	5.63	13.0	18.3	43.7	45.2
	With an electromagnetic brake [kW/s]		11.3	28.0	37.2	98.8	82.1	5.37	12.1	16.7	41.3	41.6
Rated current [A]			1.0	0.9	1.5	2.6	5.8	0.9	0.8	1.3	2.6	4.8
Maximum current [A]			3.1	2.5	5.3	9.0	20	3.2	2.5	4.6	9.1	17.2
Moment of inertia J (Note 3)	Standard$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$		0.0162	0.0300	0.0865	0.142	0.586	0.0450	0.0777	0.221	0.371	1.26
	With an electromagnetic brake$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$		0.0224	0.0362	0.109	0.164	0.694	0.0472	0.0837	0.243	0.393	1.37
Recommended load to motor inertia ratio (Note 2, 10)			35 times or less	32 times or less				17 times or less		$\begin{gathered} 26 \\ \text { times } \\ \text { or less } \end{gathered}$	$\begin{gathered} 25 \\ \text { times } \\ \text { or less } \end{gathered}$	17 times or less
Speed/position detector			22-bit encoder common to absolute position/incremental systems (resolution per servo motor revolution: 4194304 pulses/rev)									
Oil seal			None	None (Note 11)				None	None (Note 11)			
Insulation class			130(B)									
Structure			Totally-enclosed, natural-cooling (IP rating: IP65 (Note 4, 9))									
Environment	Ambient temperature	Operation	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (non-freezing)									
		Storage	$-15^{\circ} \mathrm{C}$ to $70{ }^{\circ} \mathrm{C}$ (non-freezing)									
	Ambient humidity	Operation	80 \%RH or less (non-condensing)									
		Storage	$90 \% \mathrm{RH}$ or less (non-condensing)									
	Ambience		Indoors (no direct sunlight), free from corrosive gas, flammable gas, oil mist, dust, and dirt									
	Altitude		Max. 1000 m above sea level									
	Vibration resistance (Note 6)		$\mathrm{X}, \mathrm{Y}: 49 \mathrm{~m} / \mathrm{s}^{2}$									
Vibration rank (Note 7)			V10									
Permissible load for the shaft (Note 8, 10)	L	[mm]	25		30		40	25		30		40
	Radial	[N]	88		245		392	88		245		392
	Thrust	[N]	59		98		147	59		98		147
Mass (Note 3)	Standard	[kg]	0.34	0.54	0.91	1.4	2.8	0.34	0.54	0.91	1.4	2.8
	With an electromagne	tic brake [kg]	0.54	0.74	1.3	1.8	3.8	0.54	0.74	1.3	1.8	3.8

6. HG-MR SERIES/HG-KR SERIES

Note 1. When the power supply voltage drops, the output and the rated speed cannot be guaranteed.
2. If the load to motor inertia ratio exceeds the indicated value, contact your local sales office.
3. Refer to the dimensions for the geared servo motor.
4. Except for the shaft-through portion
5. In the environment where the servo motor is exposed to oil mist, oil, or water, the servo motor of the standard specifications may not be usable. Please contact your local sales office.
6. The following figure shows the vibration directions. The value is the one at the part that indicates the maximum value (normally the opposite to load-side bracket). When the servo motor stops, fretting is likely to occur at the bearing. Therefore, suppress the vibration to about half of the permissible value. Note that this does not apply to the geared servo motor.

7. V10 indicates that the amplitude of a single servo motor is $10 \mu \mathrm{~m}$ or less. The following figure shows the servo motor mounting position for measurement and the measuring position.

8. The following shows permissible load for the shaft. Do not subject the shaft to load greater than the value in the specifications list. The value assumes that the load is applied independently.

9. For the geared servo motor, the reduction gear area is IP44-equivalent.
10. Refer to section 6.6 for the geared servo motor
11. The servo motors with an oil seal are available as optional products. For details, contact your local sales office.

6. HG-MR SERIES/HG-KR SERIES

6.3.2 Torque characteristics

POINT
When unbalanced torque is generated, such as in a vertical lift machine, it is recommended that the unbalanced torque of the machine be kept at 70% or less of the motor's rated torque.

When the power supply input of the servo amplifier are 3-phase 200 VAC or 1-phase 230 V AC , the torque characteristic is indicated by the heavy line. For the 1-phase 200 V AC power supply, part of the torque characteristic is indicated by the thin line.

6. HG-MR SERIES/HG-KR SERIES

6.4 Electromagnetic brake characteristics

The electromagnetic brake is provided to prevent a drop at a power failure or servo alarm occurrence during vertical drive or to hold a shaft at a stop. Do not use it for normal braking (including braking at servo-lock).
Before performing the operation, be sure to confirm that the electromagnetic
brake operates properly.
The operation time of the electromagnetic brake differs depending on the power
supply circuit you use. Be sure to check the operation delay time with a real
machine.

The characteristics of the electromagnetic brake provided for the servo motor with an electromagnetic brake are indicated below.

Note 1. There is no manual release mechanism. When it is necessary to hand-turn the servo motor shaft for machine centering, etc., use a separate 24 V DC power supply to release the brake electrically.
2. The value for initial on gap at $20^{\circ} \mathrm{C}$.
3. The brake gap will increase as the brake lining wears, but the gap is not adjustable.

The brake life indicated is the number of braking cycles after which adjustment will be required.
4. Always prepare a power supply exclusively used for the electromagnetic brake.
5. These are initial values. These are not guaranteed values.
6. These values are measured values and not guaranteed values.
7. Select the electromagnetic brake control relay properly, considering the characteristics of the electromagnetic brake and surge absorber.
8. Manufactured by Nippon Chemi-Con Corporation.

6. HG-MR SERIES/HG-KR SERIES

6.5 Servo motors with special shafts

The servo motors with special shafts indicated by the symbols (K and D) in the table are available. K and D are the symbols included in the servo motor model names. Refer to section 6.6.2 (4) for geared servo motors with special shaft.

Servo motor	Shaft shape	
	Key shaft (with key)	D cut shaft
HG-MR053(B)_/HG-MR13(B)_/		D
HG-KR053(B)_/HG-KR13(B)_		
HG-MR23(B)_/HG-MR43(B)_/		
HG-MR73(B)_/	K	
HG-KR23(B)_/HG-KR43(B)_/ HG-KR73(B)_		

6.5.1 Key shaft (with 2 round end key)

Variable dimension table
[Unit: mm]

Servo motor	Variable dimensions								
	S	R	Q	W	QK	QL	U	T	Y
HG-MR23(B)K HG-MR43(B)K HG-KR23(B)K HG-KR43(B)K	14h6	30	26	5	20	3	3	5	M4 Screw hole depth 15
HG-MR73(B)K HG-KR73(B)K	19h6	40	36	6	25	5	3.5	6	M5 Screw hole depth 20

6.5.2 D cut shaft
[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

6.6 Geared servo motors

Servo motors are available with a reducer designed for general industrial machines compliant and precision applications compliant.
Servo motors with an electromagnetic brake are also available.
6.6.1 For general industrial machines compliant (G1)
(1) Reduction ratio

The following table indicates the reduction ratios and actual reduction ratios of the geared servo motor for general industrial machines compliant.

Servo motor	Nominal reduction ratio	Actual reduction ratio
HG-KR053(B)G1	$1 / 5$	$9 / 44$
	$1 / 12$	$49 / 576$
	$1 / 20$	$25 / 484$
HG-KR13(B)G1	$1 / 5$	$9 / 44$
	$1 / 12$	$49 / 576$
	$1 / 20$	$25 / 484$
	$1 / 5$	$19 / 96$
	$1 / 12$	$961 / 11664$
HG-KR43(B)G1	$1 / 20$	$513 / 9984$
	$1 / 5$	$19 / 96$
	$1 / 12$	$961 / 11664$
HG-KR73(B)G1	$1 / 20$	$7 / 135$
	$1 / 5$	$1 / 5$
	$1 / 12$	$7 / 87$

6. HG-MR SERIES/HG-KR SERIES

(2) Specifications

Item	Description				
Mounting method	Flange mounting				
Mounting direction	In any directions				
Lubrication method Packed	Grease lubrication (already packed)				
	$50 \mathrm{~W} / 100 \mathrm{~W}$	$\begin{array}{\|c\|} \hline 200 \mathrm{~W} / 400 \mathrm{~W} \\ 1 / 12,1 / 20 \end{array}$	$\begin{gathered} 750 \mathrm{~W} \\ 1 / 12 \end{gathered}$	$\left\lvert\, \begin{gathered} 200 \mathrm{~W} / 400 \mathrm{~W} \\ 1 / 5 \end{gathered}\right.$	$\begin{gathered} \hline 750 \mathrm{~W} \\ 1 / 5,1 / 20 \end{gathered}$
	Mobilplex 46 Exxon Mobil	Molyn JX Nippon	$\overline{\mathrm{AP} 2}$ \& Energy	Mobil Gre Exxon	$\begin{aligned} & \text { ase SP } \\ & \text { Mobil } \end{aligned}$
Output shaft rotating direction	Same as the servo motor output shaft direction.				
Backlash (Note 3)	60 minutes or less at reducer output shaft				
Permissible load inertia moment ratio (converted into equivalent value on servo motor shaft) (Note 1)	50 W/100 W/750 W: 5 times or less 200 W/400 W: 7 times or less				
Maximum torque	Three times of the servo motor rated torque				
Maximum speed (at servo motor shaft)	$4500 \mathrm{r} / \mathrm{min}$ (permissible instantaneous speed: $5175 \mathrm{r} / \mathrm{min}$)				
IP rating (reducer area)	IP44 equivalent				
Reducer efficiency (Note 2)	45\% to 75\%				

Note 1. If the above indicated value is exceeded, please contact your local sales office.
2. The reduction gear efficiency differs depending on the reduction ratio. Also, it changes depending on the operating conditions such as the output torque, speed and rotation, temperature, etc. The numerical value in the table is a typical value in the rated torque, rated speed and rotation and typical temperature, and not a guaranteed value.
3. The backlash can be converted: $1 \mathrm{~min}=0.0167^{\circ}$

6. HG-MR SERIES/HG-KR SERIES

(3) Permissible loads of servo motor shaft

The permissible radial load in the table is the value measured at the center of the reduction gear output shaft.

Servo motor	Reduction ratio	Permissible load (Note)	
		Permissible radial load [N]	Permissible thrust load [N]
HG-KR053(B)G1	1/5	150	200
	1/12	240	320
	1/20	370	450
HG-KR13(B)G1	1/5	150	200
	1/12	240	320
	1/20	370	450
HG-KR23(B)G1	1/5	330	350
	1/12	710	720
	1/20	780	780
HG-KR43(B)G1	1/5	330	350
	1/12	710	720
	1/20	760	760
HG-KR73(B)G1	1/5	430	430
	1/12	620	620
	1/20	970	960

Note. Do not subject the shaft to load greater than the value.
The value in the table assumes that the load is applied independently.

6. HG-MR SERIES/HG-KR SERIES

6.6.2 For precision applications compliant (G5/G7)

(1) Reduction ratio

The symbols (11B, 14A, 20A, and 32A) in the following table indicate the model numbers of the reduction gears assembled to the servo motors. Servo motors with a reduction gear having the indicated reduction gear model numbers are available. The reducer model number indicates \qquad of the reducer model HPG- \qquad -05.

(2) Specifications

Item		Description
Mounting method		Flange mounting
Mounting direction		In any directions
Lubrication method		Grease lubrication (already packed)
	Packed with	Harmonic grease SK-2 (Harmonic Drive Systems)
Output shaft rotating direction		Same as the servo motor output shaft direction.
Backlash (Note 3)		3 minutes or less at reducer output shaft
Permissible load inertia moment ratio (when converting into the servo motor shaft) (Note 1)		$50 \mathrm{~W} / 100 \mathrm{~W} / 750 \mathrm{~W}: 10$ times or less 200 W/400 W: 14 times or less
Maximum torque		Three times of the servo motor rated torque
Maximum speed (servo motor shaft)		6000 r/min (permissible instantaneous speed: 6900 r/min)
IP rating (reduction gear area)		IP44 equivalent
Reducer efficiency (Note 2)		50 W (reducer model No. 14A): 22\% to 41\% 50 W (reducer model No. 11B)/100 W/200 W/400 W/750 W: 58\% to 87\%

Note 1. If the above indicated value is exceeded, please contact your local sales office.
2. The reducer efficiency differs depending on the reduction ratio. Also, it changes depending on the operating conditions such as the output torque, speed and rotation, temperature, etc. The numerical value in the table is a typical value in the rated torque, rated speed and rotation and typical temperature, and not a guaranteed value.
3. The backlash can be converted: $1 \mathrm{~min}=0.0167^{\circ}$

6. HG-MR SERIES/HG-KR SERIES

(3) Permissible loads of servo motor shaft

The radial load point of a precision reduction gear is as shown below.

L: Distance between reduction gear end face and load center

Flange-mounting flange output type for precision application (G5)

Flange-mounting shaft output type for precision application (G7)

Servo motor	Reduction ratio	Reduction gear model number	Permissible load (Note)		
			Radial load point L [mm]	Permissible radial load [N]	Permissible thrust load [N]
$\begin{aligned} & \text { HG-KR053(B)G5 } \\ & \text { HG-KR053(B)G7 } \end{aligned}$	1/5	11B	17	93	431
	1/5	14A	23	177	706
	1/9	11B	17	111	514
	1/11	14A	23	224	895
	1/21		23	272	1087
	1/33		23	311	1244
	1/45		23	342	1366
$\begin{aligned} & \text { HG-KR13(B)G5 } \\ & \text { HG-KR13(B)G7 } \end{aligned}$	1/5	11B	17	93	431
	1/5	14A	23	177	706
	1/11		23	224	895
	1/21		23	272	1087
	1/33	20A	32	733	2581
	1/45		32	804	2833
$\begin{aligned} & \text { HG-KR23(B)G5 } \\ & \text { HG-KR23(B)G7 } \end{aligned}$	1/5	14A	23	177	706
	1/11		23	224	895
	1/21	20A	32	640	2254
	1/33		32	733	2581
	1/45		32	804	2833
HG-KR43(B)G5 HG-KR43(B)G7	1/5	14A	23	177	706
	1/11	20A	32	527	1856
	1/21		32	640	2254
	1/33	32A	57	1252	4992
	1/45		57	1374	5478
HG-KR73(B)G5 HG-KR73(B)G7	1/5	20A	32	416	1465
	1/11		32	527	1856
	1/21	32A	57	1094	4359
	1/33		57	1252	4992
	1/45		57	1374	5478

Note. Do not subject the shaft to load greater than the value.
The value in the table assumes that the load is applied independently.

6. HG-MR SERIES/HG-KR SERIES

(4) Servo motor with special shaft

Servo motors with special shafts having keyway (with single pointed keys) are available for the flangemounting shaft output type for precision applications compliant (G7).

6. HG-MR SERIES/HG-KR SERIES

6.7 Mounting connectors

If the connector is not fixed securely, it may come off or may not produce a splash-proof effect during operation.
To achieve the IP rating IP65, pay attention to the following points and install the connectors.
(1) When screwing the connector, hold the connector still and gradually tighten the screws in a crisscross pattern.

1)

Connector for power supply, connector for encoder
Connector for electromagnetic brake
(2) Tighten the screws evenly. Tightening torques are as indicated below.

(3) The servo motor fitting part of each connector is provided with a splash-proof seal (O ring). When mounting a connector, use care to prevent the seal (O ring) from dropping and being pinched. If the seal (O ring) has dropped or is pinched, a splash-proof effect is not produced.

6. HG-MR SERIES/HG-KR SERIES

6.8 Dimensions

Moment of inertia on the table is the value calculated by converting the total value of moment of inertia for servo motor, reducer, and electromagnetic brake with servo motor shaft.
When running the cables to the load side, take care to avoid interference with the machine. The dimensions without tolerances are general tolerance.
The outer frame of the reducer is a material surface such as casting. Its actual dimensions may be 1 mm to 3 mm larger than the drawing dimensions. Design the machine-side with allowances.
6.8.1 Standard (without an electromagnetic brake, without a reducer)

Model	Output [W]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-MR053	50	0.0162	0.34
HG-KR053	50	0.0450	0.34

[Unit: mm]

BC38021C BC38016C

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-MR13	100	0.0300	0.54
HG-KR13	100	0.0777	0.54

Model	Output [W]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-MR23	200	0.0865	0.91
HG-KR23	200	0.221	0.91

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass [kg]
HG-MR43	400	0.142	1.4
HG-KR43	400	0.371	1.4

[Unit: mm]

Model	Output [W]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass [kg]
HG-MR73	750	0.586	2.8
HG-KR73	750	1.26	2.8

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

6.8.2 With an electromagnetic brake

Model	Output [W]	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-MR053B	50	0.32	0.0224	0.54
HG-KR053B	50	0.32	0.0472	0.54

[Unit: mm]

BC38180A BC38175A

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-MR13B	100	0.32	0.0362	0.74
HG-KR13B	100	0.32	0.0837	0.74

[Unit: mm]

BC38181A BC38176A

Model	Output [W]	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-MR23B	200	1.3	0.109	1.3
HG-KR23B	200	1.3	0.243	1.3

[Unit: mm]

Model	Output [W]	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass [kg]
HG-MR43B	400	1.3	0.164	1.8
HG-KR43B	400	1.3	0.393	1.8

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-MR73B	750	2.4	0.694	3.8
HG-KR73B	750	2.4	1.37	3.8

[Unit: mm]

6.8.3 For general industrial machine with a reducer (without an electromagnetic brake)

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053G1	50	K6505	$1 / 5(9 / 44)$	0.0820	1.4

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Moment of inertia $J\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR053G1	50	K6512	$1 / 12$ $(49 / 576)$	0.104	1.8
HG-KR053G1	50	K6520	$1 / 20$ $(25 / 484)$	0.0860	1.8

[Unit: mm]
 Power supply connector

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR13G1	100	K6505	$1 / 5(9 / 44)$	0.115	1.6

[Unit: mm]
For reverse rotation command Rotation direction $\begin{aligned} & \text { For forward rotation command }\end{aligned}$

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR13G1	100	K6512	$1 / 12(49 / 576)$	0.137	2.0
HG-KR13G1	100	K 6520	$1 / 20(25 / 484)$	0.119	2.0

[Unit: mm]
For reverse rotation command

[Unit: mm]
For reverse rotation command
Rotation direction

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Moment of inertia J $\left.\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR23G1	200	K9012	$1 / 12$ $(961 / 11664)$	0.418	3.9
HG-KR23G1	200	K9020	$1 / 20$ $(513 / 9984)$	0.391	3.9

[Unit: mm]
For reverse rotation command
Rotation direction

[Unit: mm]
For reverse rotation command
Rotation direction

BC40903*

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Moment of inertia $J\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR43G1	400	K 9012	$1 / 12$ $(961 / 11664)$	0.568	4.3

[Unit: mm]

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR73G1	750	K10005	$1 / 5(1 / 5)$	1.68	6.0

[Unit: mm]
For reverse rotation command
Rotation direction

[Unit: mm]
For reverse rotation command direction For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR73G1	750	K 12020	$1 / 20$ $(625 / 12544)$	2.41	10

[Unit: mm]
For reverse rotation command
Rotation direction

6. HG-MR SERIES/HG-KR SERIES

6.8.4 For general industrial machine with a reducer (with an electromagnetic brake)

Model	Output [W]	Reducer model	Reduction ratio $($ actual reduction ratio)	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053BG1	50	K6505	$1 / 5(9 / 44)$	0.32	0.0840	1.6

[Unit: mm]
For reverse rotation command

rection
For forward rotation command

Pin No.	Application
1	$\Theta(\mathrm{PE})$
2	U
3	V
4	W

Encoder connector

BC41085*

Model	Output [W]	Reducer model	Reduction ratio $($ actual reduction ratio $)$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $J\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053BG1	50	K6512	$1 / 12(49 / 576)$	0.32	0.106	2.0
HG-KR053BG1	50	K 6520	$1 / 20(25 / 484)$	0.32	0.0880	2.0

[Unit: mm]
For reverse rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13BG1	100	K 6505	$1 / 5(9 / 44)$	0.32	0.121	1.8

[Unit: mm]
For reverse rotation command

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13BG1	100	K 6512	$1 / 12(49 / 576)$	0.32	0.143	2.2
HG-KR13BG1	100	K 6520	$1 / 20(25 / 484)$	0.32	0.125	2.2

[Unit: mm]
For reverse rotation command
Rotation direction

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio $($ actual reduction ratio $)$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR23BG1	200	K 9005	$1 / 5(19 / 96)$	1.3	0.397	3.7

[Unit: mm]
For reverse rotation command
Rotation direction

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR23BG1	200	K9012	$1 / 12$ $(961 / 11664)$	1.3	0.440	4.3
HG-KR23BG1	200	K9020	$1 / 20$ $(513 / 9984)$	1.3	0.413	4.3

[Unit: mm]
For reverse rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio $($ actual reduction ratio $)$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG1	400	K9005	$1 / 5(19 / 96)$	1.3	0.547	4.1

[Unit: mm]
For reverse rotation command
Rotation direction

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG1	400	K 9012	$1 / 12$ $(961 / 11664)$	1.3	0.590	4.7

[Unit: mm]
For reverse rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG1	400	K 10020	$1 / 20(7 / 135)$	1.3	0.903	5.8

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio $($ actual reduction ratio $)$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73BG1	750	K 10005	$1 / 5(1 / 5)$	2.4	1.79	7.0

[Unit: mm]
For reverse rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio (actual reduction ratio)	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73BG1	750	K10012	$1 / 12(7 / 87)$	2.4	2.46	8.1

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio $($ actual reduction ratio $)$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73BG1	750	K 12020	$1 / 20$ $(625 / 12544)$	2.4	2.52	11

[Unit: mm]
For reverse rotation command Rotation direction

For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

6.8.5 Flange-mounting flange output type for precision application compliant (without an electromagnetic brake)

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053G5	50	HPG-11B-05-F0ADG	$1 / 5$	0.0485	0.55
HG-KR053G5	50	HPG-11B-09-F0ADG	$1 / 9$	0.0475	0.56

[Unit: mm]
For reverse rotation command For forward rotation command

Power supply connector		
	Pin No.	Application
	1	$\bigcirc(\mathrm{PE})$
	2	U
	3	V
	4	W

Power supply connector
Opposite-load side
BC40937*

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR053G5	50	HPG-14A-05-F0CBJS-S	$1 / 5$	0.113	1.1
HG-KR053G5	50	HPG-14A-11-F0CBKS-S	$1 / 11$	0.105	1.2
HG-KR053G5	50	HPG-14A-21-F0CBKS-S	$1 / 21$	0.0960	1.2
HG-KR053G5	50	HPG-14A-33-F0CBLS-S	$1 / 33$	0.0900	1.2
HG-KR053G5	50	HPG-14A-45-F0CBLS-S	$1 / 45$	0.0900	1.2

[Unit: mm]
For reverse rotation command
Rotation direction

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR13G5	100	HPG-11B-05-F0ADG	$1 / 5$	0.0812	0.75

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13G5	100	HPG-14A-05-F0CBJS-S	$1 / 5$	0.146	1.3
HG-KR13G5	100	HPG-14A-11-F0CBKS-S	$1 / 11$	0.138	1.4
HG-KR13G5	100	HPG-14A-21-F0CBKS-S	$1 / 21$	0.129	1.4

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13G5	100	HPG-20A-33-F0JMLAS-S	$1 / 33$	0.140	2.6
HG-KR13G5	100	HPG-20A-45-F0JMLAS-S	$1 / 45$	0.139	2.6

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR23G5	200	HPG-14A-05-F0AZW-S	$1 / 5$	0.422	1.8
HG-KR23G5	200	HPG-14A-11-FOAZX-S	$1 / 11$	0.424	1.9

[Unit: mm]
Rotation For reverse rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR23G5	200	HPG-20A-21-F0EKS-S	$1 / 21$	0.719	3.4
HG-KR23G5	200	HPG-20A-33-F0ELS-S	$1 / 33$	0.673	3.4
HG-KR23G5	200	HPG-20A-45-F0ELS-S	$1 / 45$	0.672	3.4

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

Power supply connector		
$1 \longdiv { \square }$	Pin No.	Application
2 -	1	$\stackrel{\perp}{=}$ (PE)
$3 \rightarrow$ 禹	2	U
4	3	V
	4	W

Opposite-load sid
BC40901*

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR43G5	400	HPG-14A-05-J2CBJS-S	$1 / 5$	0.572	2.3

[Unit: mm]
For reverse rotation command direction \rightarrow

11.811 .7

$$
\xrightarrow{21.7}
$$

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR43G5	400	HPG-20A-11-F0EKS-S	$1 / 11$	0.947	3.9
HG-KR43G5	400	HPG-20A-21-F0EKS-S	$1 / 21$	0.869	3.9

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR43G5	400	HPG-32A-33-F0RLAS-S	$1 / 33$	0.921	6.0
HG-KR43G5	400	HPG-32A-45-F0RLAS-S	$1 / 45$	0.915	6.0

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR73G5	750	HPG-20A-05-F0FEOS-S	$1 / 5$	1.91	4.8
HG-KR73G5	750	HPG-20A-11-F0FEPS-S	$1 / 11$	1.82	5.1

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \bullet \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR73G5	750	HPG-32A-21-F0SEIS-S	$1 / 21$	2.01	7.2
HG-KR73G5	750	HPG-32A-33-FOSEJS-S	$1 / 33$	1.79	7.2
HG-KR73G5	750	HPG-32A-45-F0SEJS-S	$1 / 45$	1.79	7.2

[Unit: mm]
For reverse rotation command Rotation direction

For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

6.8.6 For precision application with flange mounting, flange output type reducer (with an electromagnetic brake)

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053BG5	50	HPG-11B-05-F0ADG	$1 / 5$	0.32	0.0507	0.75
HG-KR053BG5	50	HPG-11B-09-F0ADG	$1 / 9$	0.32	0.0497	0.76

[Unit: mm]
For reverse rotation command For forward rotation command

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053BG5	50	HPG-14A-05-F0CBJS-S	$1 / 5$	0.32	0.115	1.3
HG-KR053BG5	50	HPG-14A-11-F0CBKS-S	$1 / 11$	0.32	0.107	
HG-KR053BG5	50	HPG-14A-21-F0CBKS-S	$1 / 21$	0.32	0.0980	
HG-KR053BG5	50	HPG-14A-33-F0CBLS-S	$1 / 33$	0.32	1.4	
HG-KR053BG5	50	HPG-14A-45-F0CBLS-S	$1 / 45$	0.32	0.0920	1.4

[Unit: mm]
For reverse rotation command Rotation direction For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13BG5	100	HPG-11B-05-F0ADG	$1 / 5$	0.32	0.0872	0.95

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Model	Output $[W]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13BG5	100	HPG-14A-05-F0CBJS-S	$1 / 5$	0.32	0.152	1.5
HG-KR13BG5	100	HPG-14A-11-F0CBKS-S	$1 / 11$	0.32	0.144	1.6
HG-KR13BG5	100	HPG-14A-21-FOCBKS-S	$1 / 21$	0.32	0.135	1.6

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13BG5	100	HPG-20A-33-F0JMLAS-S	$1 / 33$	0.32	0.146	2.8
HG-KR13BG5	100	HPG-20A-45-F0JMLAS-S	$1 / 45$	0.32	0.145	2.8

[Unit: mm]
For reverse rotation command
Rotation direction

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR23BG5	200	HPG-14A-05-F0AZW-S	$1 / 5$	1.3	0.444	
HG-KR23BG5	200	HPG-14A-11-F0AZX-S	$1 / 11$	1.3	0.4	2.2

[Unit: mm]
For reverse rotation command
Rotation direction

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR23BG5	200	HPG-20A-21-F0EKS-S	$1 / 21$	1.3	0.741	
HG-KR23BG5	200	HPG-20A-33-FOELS-S	$1 / 33$	1.3	3.8	
HG-KR23BG5	200	HPG-20A-45-FOELS-S	$1 / 45$	1.3	0.695	

[Unit: mm]
For reverse rotation command
Rotation direction

Model	Output $[W]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG5	400	HPG-14A-05-F0AZW-S	$1 / 5$	1.3	0.594	2.7

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG5	400	HPG-20A-11-F0EKS-S	$1 / 11$	1.3	0.969	4.3
HG-KR43BG5	400	HPG-20A-21-F0EKS-S	$1 / 21$	1.3	0.891	4.3

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG5	400	HPG-32A-33-FORLAS-S	$1 / 33$	1.3	0.943	6.4
HG-KR43BG5	400	HPG-32A-45-F0RLAS-S	$1 / 45$	1.3	0.937	6.4

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73BG5	750	HPG-20A-05-F0FEOS-S	$1 / 5$	2.4	2.02	5.8
HG-KR73BG5	750	HPG-20A-11-F0FEPS-S	$1 / 11$	2.4	1.93	6.1

[Unit: mm]
For reverse rotation command
ion direction
For forward rotation command

Opposite-load side
BC41105*

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73BG5	750	HPG-32A-21-F0SEIS-S	$1 / 21$	2.4	2.12	
HG-KR73BG5	750	HPG-32A-33-FOSEJS-S	$1 / 33$	2.4	8.2	
HG-KR73BG5	750	HPG-32A-45-F0SEJS-S	$1 / 45$	2.4	8.2	

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

6.8.7 For precision application with flange mounting, shaft output type reducer (without an electromagnetic brake)

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR053G7	50	HPG-11B-05-F20ADG	$1 / 5$	0.0512	0.58
HG-KR053G7	50	HPG-11B-09-F20ADG	$1 / 9$	0.0492	0.58

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053G7	50	HPG-14A-05-J2CBJS-S	$1 / 5$	0.119	1.2
HG-KR053G7	50	HPG-14A-11-J2CBKS-S	$1 / 11$	0.106	1.3
HG-KR053G7	50	HPG-14A-21-J2CBKS-S	$1 / 21$	0.0960	1.3
HG-KR053G7	50	HPG-14A-33-J2CBLS-S	$1 / 33$	0.0900	1.3
HG-KR053G7	50	HPG-14A-45-J2CBLS-S	$1 / 45$	0.0900	1.3

[Unit: mm]
For reverse rotation command \rightarrow For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13G7	100	HPG-11B-05-J20ADG	$1 / 5$	0.0839	0.78

[Unit: mm]
For reverse rotation command
Rotation forward rotation command

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13G7	100	HPG-14A-05-J2CBJS-S	$1 / 5$	0.152	1.4
HG-KR13G7	100	HPG-14A-11-J2CBKS-S	$1 / 11$	0.139	1.5
HG-KR13G7	100	HPG-14A-21-J2CBKS-S	$1 / 21$	0.129	1.5

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR13G7	100	HPG-20A-33-J2JMLAS-S	$1 / 33$	0.141	3.0
HG-KR13G7	100	HPG-20A-45-J2JMLAS-S	$1 / 45$	0.139	3.0

[Unit: mm]

[Unit: mm]
For reverse rotation command Rotation direction For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg}^{2} \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR23G7	200	HPG-20A-21-J2EKS-S	$1 / 21$	0.721	3.8
HG-KR23G7	200	HPG-20A-33-J2ELS-S	$1 / 33$	0.674	3.8
HG-KR23G7	200	HPG-20A-45-J2ELS-S	$1 / 45$	0.672	3.8

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43G7	400	HPG-14A-05-J2AZW-S	$1 / 5$	0.578	2.4

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR43G7	400	HPG-20A-11-J2EKS-S	$1 / 11$	0.955	4.3
HG-KR43G7	400	HPG-20A-21-J2EKS-S	$1 / 21$	0.871	4.3

[Unit: mm]

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-KR43G7	400	HPG-32A-33-J2RLAS-S	$1 / 33$	0.927	7.4
HG-KR43G7	400	HPG-32A-45-J2RLAS-S	$1 / 45$	0.918	7.4

[Unit: mm]
For reverse rotation command direction Ford rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73G7	750	HPG-20A-05-J2FEOS-S	$1 / 5$	1.95	5.2
HG-KR73G7	750	HPG-20A-11-J2FEPS-S	$1 / 11$	1.83	5.5

[Unit: mm]
For reverse rotation command

Model	Output [W]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73G7	750	HPG-32A-21-J2SEIS-S	$1 / 21$	2.03	8.6
HG-KR73G7	750	HPG-32A-33-J2SEJS-S	$1 / 33$	1.80	8.6
HG-KR73G7	750	HPG-32A-45-J2SEJS-S	$1 / 45$	1.79	8.6

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

6.8.8 Flange-mounting shaft output type for precision application compliant (with an electromagnetic brake)

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053BG7	50	HPG-11B-05-J20ADG	$1 / 5$	0.32	0.0534	0.78
HG-KR053BG7	50	HPG-11B-09-J20ADG	$1 / 9$	0.32	0.0514	0.78

[Unit: mm]
For reverse rotation command
Rotation direction ror forward rotion command
For

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR053BG7	50	HPG-14A-05-J2CBJS-S	$1 / 5$	0.32	0.121	1.4
HG-KR053BG7	50	HPG-14A-11-J2CBKS-S	$1 / 11$	0.32	0.108	
HG-KR053BG7	50	HPG-14A-21-J2CBKS-S	$1 / 21$	0.32	0.0980	
HG-KR053BG7	50	HPG-14A-33-J2CBLS-S	$1 / 33$	0.32	1.5	
HG-KR053BG7	50	HPG-14A-45-J2CBLS-S	$1 / 45$	0.32	0.0920	1.5

[Unit: mm]
For reverse rotation command For forward rotation command

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13BG7	50	HPG-11B-05-J20ADG	$1 / 5$	0.32	0.0899	

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13BG7	100	HPG-14A-05-J2CBJS-S	$1 / 5$	0.32	0.158	1.6
HG-KR13BG7	100	HPG-14A-11-J2CBKS-S	$1 / 11$	0.32	0.145	1.7
HG-KR13BG7	100	HPG-14A-21-J2CBKS-S	$1 / 21$	0.32	0.135	1.7

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Model	Output $[W]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR13BG7	100	HPG-20A-33-J2JMLAS-S	$1 / 33$	0.32	0.147	3.2
HG-KR13BG7	100	HPG-20A-45-J2JMLAS-S	$1 / 45$	0.32	0.145	3.2

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR23BG7	200	HPG-14A-05-J2AZW-S	$1 / 5$	1.3	0.450	2.3
HG-KR23BG7	200	HPG-14A-11-J2AZX-S	$1 / 11$	1.3	0.446	2.4

[Unit: mm]

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR23BG7	200	HPG-20A-21-J2EKS-S	$1 / 21$	1.3	0.743	
HG-KR23BG7	200	HPG-20A-33-J2ELS-S	$1 / 33$	1.3	0.2	
HG-KR23BG7	200	HPG-20A-45-J2ELS-S	$1 / 45$	1.3	4.2	

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[W]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG7	400	HPG-14A-05-J2AZW-S	$1 / 5$	1.3	0.600	2.8

[Unit: mm]

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG7	400	HPG-20A-11-J2EKS-S	$1 / 11$	1.3	0.977	4.7
HG-KR43BG7	400	HPG-20A-21-J2EKS-S	$1 / 21$	1.3	0.893	4.7

[Unit: mm]
For reverse rotation command

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR43BG7	400	HPG-32A-33-J2RLAS-S	$1 / 33$	1.3	0.949	7.8
HG-KR43BG7	400	HPG-32A-45-J2RLAS-S	$1 / 45$	1.3	0.940	7.8

[Unit: mm]

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73BG7	750	HPG-20A-05-J2FEOS-S	$1 / 5$	2.4	2.06	6.2
HG-KR73BG7	750	HPG-20A-11-J2FEPS-S	$1 / 11$	2.4	1.94	6.5

[Unit: mm]

6. HG-MR SERIES/HG-KR SERIES

Model	Output $[\mathrm{W}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-KR73BG7	750	HPG-32A-21-J2SEIS-S	$1 / 21$	2.4	2.14	9.6
HG-KR73BG7	750	HPG-32A-33-J2SEJS-S	$1 / 33$	2.4	1.91	9.6
HG-KR73BG7	750	HPG-32A-45-J2SEJS-S	$1 / 45$	2.4	1.90	9.6

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

MEMO

\qquad

7. HG-SR SERIES

7. HG-SR SERIES

This chapter provides information on the servo motor specifications and characteristics. When using the HGSR series servo motor, always read the Safety Instructions in the beginning of this manual and chapters 1 to 5 , in addition to this chapter.

7.1 Model code definition

The following describes what each block of a model name indicates. Not all combinations of the symbols are available.

Note 1. Key is not included.
2. The servo motors with an oil seal are available as optional products. For details, contact your local sales office.

7. HG-SR SERIES

7.2 Combination list of servo motors and servo amplifiers

Servo motor	Servo amplifier	
	MR-J4 1-axis	MR-J4 2-axis
HG-SR51	MR-J4-60_	MR-J4W2-77B MR-J4W2-1010B
HG-SR81	MR-J4-100_	MR-J4W2-1010B
HG-SR121	MR-J4-200_	
HG-SR201	MR-J4-350_	
HG-SR301	MR-J4-500_	
HG-SR421	MR-J4-60_	
HG-SR52	MR-J4-100_	
HG-SR102	MR-J4W2-77B	
HG-SR152	MR-J4W2-1010B	
HG-SR202	MR-J4-350_	
HG-SR352	MR-J4-500_	
HG-SR502	MR-J4-700_	

7. HG-SR SERIES

7.3 Standard specifications

7.3.1 Standard specifications list

			HG-SR 1000 r/min series (Compatible with 3-phase 200 V AC, medium inertia/medium capacity)						HG-SR 2000 r/min series (Compatible with 3-phase 200 V AC, medium inertia/medium capacity)						
			51(B)	81(B)	121 (B)	201 (B)	301 (B)	421 (B)	52(B)	102 (B)	152 (B)	202 (B)	352 (B)	502 (B)	702 (B)
Power supply capacity			Refer to "Power supply equipment capacity and generated loss of servo amplifiers" in Servo Amplifier Instruction Manual.												
Continuous running duty (Note 1)	Rated output [kW]		0.5	0.85	1.2	2.0	3.0	4.2	0.5	1.0	1.5	2.0	3.5	5.0	7.0
	Rated torque [$\mathrm{N} \cdot \mathrm{m}]$		4.8	8.1	11.5	19.1	28.6	40.1	2.4	4.8	7.2	9.5	16.7	23.9	33.4
Maximum torque (Note 10)			14.3	24.4	34.4	57.3	85.9	120	7.2	14.3	21.5	28.6	50.1	71.6	100
Rated speed (Note 1) [r/min]			1000						2000						
Maximum speed (Note 10)		[r/min]	1500						3000						
Instantaneous permissible speed (Note 10)			1725						3450						
Power rate at continuous rated torque	Standard [kW/		19.7	41.2	28.1	46.4	82.3	107	7.85	19.7	32.1	19.5	35.5	57.2	74.0
	With an electromagnetic brake [kW/s]		16.5	36.2	23.2	41.4	75.3	99.9	6.01	16.5	28.2	16.1	31.7	52.3	69.4
Rated current [A]			2.8	5.2	7.1	9.4	13	19	2.9	5.6	9.4	9.6	14	22	26
Maximum current [A]			9.0	16.6	22.7	30.1	41.6	60.8	9.0	17.4	29.1	30.7	44.8	70.4	83.2
Moment of inertia J (Note 3)	$\begin{aligned} & \text { Standard } \\ & \quad\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right] \\ & \hline \end{aligned}$		11.6	16.0	46.8	78.6	99.7	151	7.26	11.6	16.0	46.8	78.6	99.7	151
	With an electromagnetic brake$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$		13.8	18.2	56.5	88.2	109	161	9.48	13.8	18.2	56.5	88.2	109	161
Recommended load to motor inertia ratio (Note 2, 10)			17 times or less		15 times or less					17 times or less		15 times or less			
Speed/position detector			22-bit encoder common to absolute position/incremental systems (resolution per servo motor revolution: 4194304 pulses/rev)												
Oil seal			None (Note 11)												
Insulation class			155(F)												
Structure			Totally-enclosed, natural-cooling (IP rating: IP67 (Note 4, 9))												
Environment (Note 5)	Ambient temperature	Operation	$0^{\circ} \mathrm{C}$ to $40{ }^{\circ} \mathrm{C}$ (non-freezing)												
		Storage	$-15^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (non-freezing)												
	Ambient humidity	Operation	$80 \% \mathrm{RH}$ or less (non-condensing)												
		Storage	$90 \% \mathrm{RH}$ or less (non-condensing)												
	Ambience		Indoors (no direct sunlight), free from corrosive gas, flammable gas, oil mist, dust, and dirt												
	Altitude		Max. 1000 m above sea level												
	Vibration resistance (Note 6)		$\begin{gathered} \mathrm{X}, \mathrm{Y}: \\ 24.5 \mathrm{~m} / \mathrm{s}^{2} \end{gathered}$		$\begin{array}{\|c\|} \hline \mathrm{X}: 24.5 \mathrm{~m} / \mathrm{s}^{2} \\ \mathrm{Y}: 49 \mathrm{~m} / \mathrm{s}^{2} \\ \hline \end{array}$		$\begin{aligned} & X: 24.5 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{Y}: 29.4 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$		$\mathrm{X}, \mathrm{Y}: 24.5 \mathrm{~m} / \mathrm{s}^{2}$			$\begin{gathered} \hline \mathrm{X}: 24.5 \mathrm{~m} / \mathrm{s}^{2} \\ \mathrm{Y}: 49 \mathrm{~m} / \mathrm{s}^{2} \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{X}: 24.5 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{Y}: 29.4 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$	
Vibration rank (Note 7)			V10												
Permissible load for the shaft (Note 8)	L	[mm]	55		79				55			79			
	Radial	[N]	980		2058				980			2058			
	Thrust	[N]	490		980				490			980			
Mass (Note 3)	Standard [kg]		6.2	7.3	11	16	20	27	4.8	6.2	7.3	11	16	20	27
	With an electromagnetic brake [kg]		8.2	9.3	17	22	26	33	6.7	8.2	9.3	17	22	26	33

7. HG-SR SERIES

Note 1. When the power supply voltage drops, the output and the rated speed cannot be guaranteed.
2. If the load to motor inertia ratio exceeds the indicated value, contact your local sales office.
3. Refer to the dimensions for the geared servo motor.
4. Except for the shaft-through portion
5. In the environment where the servo motor is exposed to oil mist, oil, or water, the servo motor of the standard specifications may not be usable. Please contact your local sales office.
6. The following figure shows the vibration directions. The value is the one at the part that indicates the maximum value (normally the opposite to load-side bracket). When the servo motor stops, fretting is likely to occur at the bearing. Therefore, suppress the vibration to about half of the permissible value.

7. V10 indicates that the amplitude of a single servo motor is $10 \mu \mathrm{~m}$ or less. The following figure shows the servo motor mounting position for measurement and the measuring position.

8. The following shows permissible load for the shaft. Do not subject the shaft to load greater than the value in the specifications list. The value assumes that the load is applied independently.

9. For the geared servo motor, the reduction gear area is IP44-equivalent.
10. Refer to section 7.6 for the geared servo motor.
11. The servo motors with an oil seal are available as optional products. For details, contact your local sales office.

7.3.2 Torque characteristics

POINT

When unbalanced torque is generated, such as in a vertical lift machine, it is recommended that the unbalanced torque of the machine be kept at 70% or less of the motor's rated torque.

When the power supply input of the servo amplifier are 3-phase 200 VAC or 1-phase 230 V AC , the torque characteristic is indicated by the heavy line. For the 1-phase 200 V AC power supply, part of the torque characteristic is indicated by the thin line. HG-SR51 and HG-SR52 support single-phase power supply.

7.4 Electromagnetic brake characteristics

The electromagnetic brake is provided to prevent a drop at a power failure or servo alarm occurrence during vertical drive or to hold a shaft at a stop. Do not use it for normal braking (including braking at servo-lock).
Before operating the servo motor, be sure to confirm that the electromagnetic
brake operates properly.
The operation time of the electromagnetic brake differs depending on the power
supply circuit you use. Be sure to check the operation delay time with a real
machine.

The characteristics of the electromagnetic brake provided for the servo motor with an electromagnetic brake are indicated below.

		HG-SR51B/HG-SR81B/ HG-SR52B/HG-SR102B/ HG-SR152B	HG-SR121B/HG-SR201B/ HG-SR301B/HG-SR421B/ HG-SR202B/HG-SR352B/ HG-SR502B/HG-SR702B
Type (Note 1)		Spring actuated type safety brake	
Rated voltage (Note 4)		24 V DC ${ }_{-10 \%}^{0}$	
Power consumption	[W] at $20^{\circ} \mathrm{C}$	20	34
Coil resistance (Note 6)	[Ω]	29.0	16.8
Inductance (Note 6)	[H]	0.80	1.10
Brake static friction torque	[$\mathrm{N} \cdot \mathrm{m}$]	8.5	44
Release delay time (Note 2) [s]		0.04	0.1
Braking delay time (Note 2)	DC off	0.03	0.03
Permissible braking work	Per braking [J]	400	4500
	Per hour [J]	4000	45000
Brake looseness at servo motor shaft (Note 5) [degrees]		0.2 to 0.6	0.2 to 0.6
Brake life (Note 3)	Number of brakings [times]	20000	20000
	Work per braking [J]	200	1000
Selection example of surge absorbers to be used (Note 7, 8)	For the suppressed voltage 125 V	TND20V-680KB	
	For the suppressed voltage 350 V	TND10V-221KB	

Note 1. There is no manual release mechanism. When it is necessary to hand-turn the servo motor shaft for machine centering, etc., use a separate 24 V DC power supply to release the brake electrically.
2. The value for initial on gap at $20^{\circ} \mathrm{C}$.
3. The brake gap will increase as the brake lining wears, but the gap is not adjustable.

The brake life indicated is the number of braking cycles after which adjustment will be required.
4. Always prepare a power supply exclusively used for the electromagnetic brake.
5. These are initial values. These are not guaranteed values.
6. These values are measured values and not guaranteed values.
7. Select the electromagnetic brake control relay properly, considering the characteristics of the electromagnetic brake and surge absorber.
8. Manufactured by Nippon Chemi-Con Corporation.

7. HG-SR SERIES

7.5 Servo motors with special shafts

The servo motors with special shafts indicated by the symbol (K) in the table is available. K is the symbol attached to the servo motor model names.

Servo motor	Shaft shape
	Key shaft (without key)
HG-SR_(B)K	K

Key shaft (without key)

7.6 Geared servo motors

| Geared servo motors must be mounted in the specified direction. Otherwise, it |
| :---: | :---: |
| can leak oil, leading to a fire or malfunction. |
| -For the geared servo motor, transport it in the same status as in the installation |
| method. Tipping it over can cause oil leakage. |

Servo motors are available with a reducer designed for general industrial machines compliant and precision applications compliant.
Servo motors with an electromagnetic brake are also available.

7.6.1 For general industrial machines compliant (G1/G1H)

(1) Reduction ratio

The following table indicates the reduction ratios and reducer frame numbers of the geared servo motor for general industrial machines compliant.

Servo motor	Reduction ratio						
	1/6	1/11	1/17	1/29	1/35	1/43	1/59
HG-SR52(B)G1(H)	6100				6120		
HG-SR102(B)G1(H)	6120					6130	6160
HG-SR152(B)G1(H)	6120			6130		6160	
HG-SR202(B)G1(H)	6120			6165			
HG-SR352(B)G1(H)	6135			6165		6175	
HG-SR502(B)G1(H)	6165			6180			6185
HG-SR702(B)G1(H)	6165	6170		6180		6195	

(2) Specifications

Item	Description
Mounting method	Refer to (2) (b) in this section.
Mounting direction	Refer to (2) (b) in this section.
	Refer to (2) (b)/(c) in this section.
Lubrication method Recommended products (Note 1)	Refer to (2) (c) in this section.
Output shaft rotating direction	Opposite direction to the servo motor output shaft
Backlash (Note 5)	40 minutes to 2° at reducer output shaft (Note 4)
Permissible load inertia moment ratio (when converting into the servo motor shaft) (Note 2)	4 times or less
Maximum torque	Three times of the servo motor rated torque
Maximum speed (servo motor shaft)	Refer to (2) (a) in this section.
IP rating (reducer area)	IP44 equivalent
Reducer efficiency (Note 3)	85\% to 94\%

Note 1. Already packed with grease.
2. If the above indicated value is exceeded, please contact your local sales office.
3. The reducer efficiency differs depending on the reduction ratio. Also, it changes depending on the operating conditions such as the output torque, speed and rotation, temperature, etc. The numerical value in the table is a typical value in the rated torque, rated speed and rotation and typical temperature, and not a guaranteed value.
4. These values are design values and not guaranteed values.
5. The backlash can be converted: $1 \mathrm{~min}=0.0167^{\circ}$

7. HG-SR SERIES

(a) Maximum speed

(b) Lubrication method and mounting direction

Oil lubrication cannot be used in applications where the servo motor will move. Specify grease lubrication.
For grease lubrication, the reducer is already grease-packed. For oil lubrication, pack the reducer with oil on the customer side.

Mounting direction	Shaft any direction		Shaft horizontal		Shaft downward		Shaft upward	
Reducer model Reducer frame No.	CNHM (Footmounting)	CNVM (Flangemounting)	CHHM (Footmounting)	CHVM (Flangemounting)	CVHM (Footmounting)	CVVM (Flangemounting)	CWHM (Footmounting)	CWVM (Flangemounting)
6100	Grease	Grease						
6120	Grease	Grease						
6130/6135			(Note) Oil	(Note) Oil	(Note) Oil	(Note) Oil	Grease	Grease
6160/6165			(Note) Oil	(Note) Oil	(Note) Oil	(Note) Oil	Grease	Grease
6170/6175	T	$\mathrm{C}^{\text {che }}$	Oil	Oil	Oil	Oil		
6180/6185			Oil	Oil	Oil	Oil		
6195			Oil	Oil	Oil	Oil		

Note. Grease-lubricated type is also available as optional products.
(c) Recommended lubricants

1) Grease

Albania Grease RA (Shell)
2) Lubricating oil

POINT

- Since the oil-lubricated models are shipped without oil, make sure to fill oil up to the upper red line of the oil gauge before operation.

Ambient temperature $\left[{ }^{\circ} \mathrm{C}\right]$	COSMO OIL	JX Nippon Oil \& Energy	Idemitsu Kosan	Shell	Esso	Exxon Mobil	Japan Energy
-10 to 5	COSMO GEAR SE68	BONNOC M68 DIAMOND GEAR LUBE SP68	DAPHNE SUPER GEAR OIL 68	Omala Oils 68	SPARTAN EP68	$\begin{gathered} \hline \text { Mobilgear } \\ 626 \\ \text { (ISOVG68) } \end{gathered}$	JOMO Reductus 68
0 to 35	$\begin{gathered} \hline \text { COSMO } \\ \text { GEAR } \\ \text { SE100/150 } \end{gathered}$	BONNOC M100/150 DIAMOND GEAR LUBE SP100/150	DAPHNE SUPER GEAR OIL 100/150	$\begin{gathered} \hline \text { Omala Oils } \\ 100 / 150 \end{gathered}$	$\begin{aligned} & \text { SPARTAN } \\ & \text { EP100/150 } \end{aligned}$	Mobilgear $627 / 629$ (ISOVG100/1 50)	JOMO Reductus 100/150
30 to 50	COSMO GEAR SE200/320/4 60	BONNOC M200 to 460 DIAMOND GEAR LUBE SP220 to 460		$\begin{aligned} & \hline \text { Omala Oils } \\ & 200 \text { to } 460 \end{aligned}$	SPARTAN EP220 to 460	Mobilgear 630 to 634 (ISOVG220 to 460)	JOMO Reductus 200 to 460

Lubricating oil fill amount

Reducer frame No.	Fill amount [L]	
	Horizontal type	Vertical type
$6130 / 6135$	0.7	1.1
$6160 / 6165$	1.4	1.0
$6170 / 6175$	1.9	1.9
$6180 / 6185$	2.5	2.0
6195	4.0	2.7

(b) Changing intervals

1) Grease

Maintenance-free. (Limited to the case where the grease-lubricated type is standard)
2) Lubricating oil

Changing intervals	Operation hours per day	
	Less than 10 hours	10 hours to 24 hours
First time	500 hours	
Second time and later	Half year	2500 hours

(3) Permissible loads of servo motor shaft

The permissible radial load in the table is the value measured at the center of the reducer output shaft.

Q: Length of axis (Refer to section 7.7.3 to 7.7.6.)

Servo motor	Reduction ratio	Reducer frame No.	Permissible load (Note)	
			Permissible radial load [N]	Permissible thrust load [N]
HG-SR52(B)G1(H)	1/6	6100	2058	1470
	1/11		2391	1470
	1/17		2832	1470
	1/29		3273	1470
	1/35	6120	5253	2940
	1/43		5253	2940
	1/59		5880	2940
HG-SR102(B)G1(H)	1/6	6120	2842	2352
	1/11		3273	2764
	1/17		3646	2940
	1/29		4410	2940
	1/35		5253	2940
	1/43	6130	6047	3920
	1/59	6160	9741	6860
HG-SR152(B)G1(H)	1/6	6120	2842	2352
	1/11		3273	2764
	1/17		3646	2940
	1/29	6130	5135	3920
	1/35		6047	3920
	1/43	6160	8555	6860
	1/59		9741	6860
HG-SR202(B)G1(H)	1/6	6120	2842	2352
	1/11		3273	2764
	1/17		3646	2940
	1/29	6165	7291	6860
	1/35		8555	6860
	1/43		8555	6860
	1/59		9741	6860

Servo motor	Reduction ratio	Reducer frame No.	Permissible load (Note)	
			Permissible radial load [N]	Permissible thrust load [N]
HG-SR352(B)G1(H)	1/6	6135	3332	3920
	1/11		3871	3920
	1/17		4420	3920
	1/29	6165	7291	6860
	1/35		8555	6860
	1/43	6175	11662	9800
	1/59		13132	9800
HG-SR502(B)G1(H)	1/6	6165	5448	5000
	1/11		5488	6292
	1/17		6468	6860
	1/29	6180	13426	13720
	1/35		16072	13720
	1/43		16072	13720
	1/59	6185	16072	13720
HG-SR702(B)G1(H)	1/6	6165	7526	5000
	1/11	6170	7526	8085
	1/17		8683	9673
	1/29	6180	13426	13720
	1/35		16072	13720
	1/43	6195	22540	19600
	1/59		22540	19600

Note. Do not subject the shaft to load greater than the value.
The value in the table assumes that the load is applied independently.

7. HG-SR SERIES

7.6.2 For precision applications compliant (G5/G7)

(1) Reduction ratio

The symbols (20A, 30A, 50A) in the following table indicate the model numbers of the reduction gears assembled to the servo motors. Geared servo motors having the indicated reducer model numbers are available. The reducer model number indicates \qquad of the reducer model HPG- \qquad -05.

Servo motor	Reduction ratio				
	1/5	1/11	1/21	1/33	1/45
$\begin{aligned} & \text { HG-SR52(B)G5 } \\ & \text { HG-SR52(B)G7 } \end{aligned}$	20A		32A		
HG-SR102(B)G5 HG-SR102(B)G7	20A	32A		50A	
HG-SR152(B)G5 HG-SR152(B)G7	20A	32A		50A	
$\begin{aligned} & \text { HG-SR202(B)G5 } \\ & \text { HG-SR202(B)G7 } \\ & \hline \end{aligned}$	32A		50A		
$\begin{aligned} & \text { HG-SR352(B)G5 } \\ & \text { HG-SR352(B)G7 } \end{aligned}$	32A	50A			
$\begin{aligned} & \text { HG-SR502(B)G5 } \\ & \text { HG-SR502(B)G7 } \end{aligned}$	50A				
HG-SR702(B)G5 HG-SR702(B)G7	50A				

(2) Specifications

Item	Description
Mounting method	Flange mounting
Mounting direction	In any directions
	Grease lubrication (already packed)
Lubrication method\quad Packed with	Reducer model number 20A, 32A: Harmonic grease SK-2 (Harmonic Drive Systems) Reducer model number 50A: Epiknock grease AP(N)2 (JX Nippon Oil \& Energy)
Output shaft rotating direction	Same as the servo motor output shaft direction.
Backlash (Note 3)	3 minutes or less at reducer output shaft
Permissible load to motor inertia ratio (when converting into the servo motor shaft) (Note 1)	10 times or less
Maximum torque	Three times of the servo motor rated torque
Maximum speed (servo motor shaft)	3000 r/min (permissible instantaneous speed: 3450 r/min)
IP rating (reducer area)	IP44 equivalent
Reducer efficiency (Note 2)	77\% to 92\%

Note 1. If the above indicated value is exceeded, please contact your local sales office.
2. The reducer efficiency differs depending on the reduction ratio. Also, it changes depending on the operating conditions such as the output torque, speed and rotation, temperature, etc. The numerical value in the table is a typical value in the rated torque, rated speed and rotation and typical temperature, and not a guaranteed value.
3. The backlash can be converted: $1 \mathrm{~min}=0.0167^{\circ}$

7. HG-SR SERIES

(3) Permissible loads of servo motor shaft

The radial load point of a precision reducer is as shown below.

L: Distance between reduction gear end face and load center

Flange-mounting flange output type for precision application (G5)

Q: Length of axis (Refer to section 7.7.9, 7.7.10.)

Flange-mounting shaft output type for precision application (G7)

Servo motor	Reduction ratio	Reducer model number	Radial load point L [mm]	Permissible load (Note)	
				Permissible radial load [N]	Permissible thrust load [N]
$\begin{aligned} & \text { HG-SR52(B)G5 } \\ & \text { HG-SR52(B)G7 } \end{aligned}$	1/5	20A	32	416	1465
	1/11		32	527	1856
	1/21	32A	57	1094	4359
	1/33		57	1252	4992
	1/45		57	1374	5478
$\begin{aligned} & \text { HG-SR102(B)G5 } \\ & \text { HG-SR102(B)G7 } \end{aligned}$	1/5	20A	32	416	1465
	1/11	32A	57	901	3590
	1/21		57	1094	4359
	1/33	50A	62	2929	10130
	1/45		62	3215	11117
HG-SR152(B)G5 HG-SR152(B)G7	1/5	20A	32	416	1465
	1/11	32A	57	901	3590
	1/21	50A	62	2558	8845
	1/33		62	2929	10130
	1/45		62	3215	11117
$\begin{aligned} & \text { HG-SR202(B)G5 } \\ & \text { HG-SR202(B)G7 } \end{aligned}$	1/5	32A	57	711	2834
	1/11		57	901	3590
	1/21	50A	62	2558	8845
	1/33		62	2929	10130
	1/45		62	3215	11117
$\begin{aligned} & \text { HG-SR352(B)G5 } \\ & \text { HG-SR352(B)G7 } \end{aligned}$	1/5	32A	57	711	2834
	1/11	50A	62	2107	7285
	1/21		62	2558	8845
HG-SR502(B)G5	1/5	50A	62	1663	5751
HG-SR502(B)G7	1/11		62	2107	7285
$\begin{aligned} & \hline \text { HG-SR702(B)G5 } \\ & \text { HG-SR702(B)G7 } \\ & \hline \end{aligned}$	1/5	50A	62	1663	5751

Note. Do not subject the shaft to load greater than the value.
The value in the table assumes that the load is applied independently.

7. HG-SR SERIES

(4) Servo motor with special shaft

Servo motors with special shafts having keyway (with single pointed keys) are available for the flangemounting shaft output type for precision applications compliant (G7).
[Unit: mm]

Servo motor	Reducer model number	Q	$\varphi \mathrm{S}$	W	T	QK	U	Y
HG-SR_(B)G7K	20 A	42	25 h 7	8	7	36	4	M6 screw hole depth 12
	32 A	82	40 h 7	12	8	70	5	M10 screw hole depth 20
	50 A	82	50 h 7	14	9	70	5.5	

7. HG-SR SERIES

7.7 Dimensions

Moment of inertia on the table is the value calculated by converting the total value of moment of inertia for servo motor, reducer, and electromagnetic brake with servo motor shaft.
The dimensions without tolerances are general tolerance.
The outer frame of the reducer is a material surface such as casting. Its actual dimensions may be 1 mm to 3 mm larger than the drawing dimensions. Design the machine-side with allowances.
7.7.1 Standard (without an electromagnetic brake, without a reducer)

Model	Output [kW]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR52	0.5	7.26	4.8

Model	Output [kW]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR51	0.5	11.6	6.2
HG-SR102	1.0	11.6	6.2

[Unit: mm]

Power supply connector
Motor flange direction
BC41045A BC41039A

Model	Output [kW]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR81	0.85	16.0	7.3
HG-SR152	1.5	16.0	7.3

Model	Output [kW]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR121	1.2	46.8	11
HG-SR202	2.0	46.8	11

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR201	2.0	78.6	16
HG-SR352	3.5	78.6	16

[Unit: mm]

$\rightarrow 98.8 \longrightarrow$

Power supply connector
Motor flange direction
Motor flange direction

BC41048A BC41042A

Note. *1 and *2 are screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR301	3.0	99.7	20
HG-SR502	5.0	99.7	20

[Unit: mm]
4- $\varphi 13.5$ mounting hole
Use hexagon socket
head cap screw.

BC41049A BC41043A

Note. *1 and *2 are screw hole for eyebolt (M8).

Model	Output [kW]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR421	4.2	151	27
HG-SR702	7.0	151	27

[Unit: mm]
$4-\varphi 13.5$ mounting hole
Use hexagon socke

Motor flange direction \longrightarrow
BC41050A BC41044A

Note. *1, *2, *3 and *4 are screw hole for eyebolt (M8).

7.7.2 With an electromagnetic brake

Model	Output $[\mathrm{kW}]$	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR52B	0.5	8.5	9.48	6.7

[Unit: mm]

Model	Output [kW]	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR51B	0.5	8.5	13.8	8.2
HG-SR102B	1.0	8.5	13.8	8.2

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR81B	0.85	8.5	18.2	9.3
HG-SR152B	1.5	8.5	18.2	9.3

[Unit: mm]
4- $\varphi 9$ mounting hole Use hexagon socket head cap screw.

Model	Output $[\mathrm{kW}]$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR121B	1.2	44	56.5	17
HG-SR202B	2.0	44	56.5	17

[Unit: mm]

- $\varphi 13.5$ mounting hole

Use hexagon socket head cap screw.

 MS3102A22-22P

Electromagnetic brake connector Motor flange direction \longrightarrow

W
Power supply connector
Motor flange direction -

BC41060* BC41054*

Model	Output $[\mathrm{kW}]$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR201B	2.0	44	88.2	22
HG-SR352B	3.5	44	88.2	22

[Unit: mm]

BC41061* BC41055*

Note. *1 and *2 are screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR301B	3.0	44	109	26
HG-SR502B	5.0	44	109	26

[Unit: mm]

Note. *1 and *2 are screw hole for eyebolt (M8).

Model	Output [kW]	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR421B	4.2	44	161	33
HG-SR702B	7.0	44	161	33

[Unit: mm]

Note. *1, *2, *3 and *4 are screw hole for eyebolt (M8).

7.7.3 For general industrial machine with a reducer (without an electromagnetic brake)

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR52G1	0.5	CNVM-6100	1/6	8.08	18
HG-SR52G1	0.5		1/11	7.65	18
HG-SR52G1	0.5		1/17	7.53	18
HG-SR52G1	0.5		1/29	7.47	18

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR52G1	0.5	CNVM-6120	1/35	8.26	27
HG-SR52G1	0.5		1/43	8.22	27
HG-SR52G1	0.5		1/59	8.18	27

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR102G1	1.0	CNVM-6120	1/6	14.8	30
HG-SR102G1	1.0		1/11	13.3	30
HG-SR102G1	1.0		1/17	12.9	30
HG-SR102G1	1.0		1/29	12.6	30
HG-SR102G1	1.0		1/35	12.6	30

[Unit: mm]

For reverse rotation command
For forward rotation command

BC41119*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass [kg]
HG-SR102G1	1.0	CHVM-6130	$1 / 43$	13.8	49

[Unit: mm]
For reverse rotation command
Rotation direction rotation command
For forward rotation command

BC41120*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102G1	1.0	CHVM-6160	$1 / 59$	19.1	81

[Unit: mm]

[Unit: mm]
For reverse rotation command

Power supply connector
Motor flange direction \longrightarrow

Shaft section view AA

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G1	1.5	CHVM-6130	$1 / 29$	18.4	50
			18.3	50	
HG-SR152G1	1.5				

[Unit: mm]
or reverse rotation command

BC41123*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G1	1.5	CHVM-6160	$1 / 43$	23.6	82
			23.5	82	

[Unit: mm]
For reverse rotation command
Rotation direction

For forward rotation command

BC41124*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202G1	2.0		$1 / 6$	50.0	36
HG-SR202G1	2.0		$1 / 11$	48.4	36
HG-SR202G1	2.0		$1 / 17$	48.1	36

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202G1	2.0		54.8	87	
HG-SR202G1	2.0	CHVM-6165	$1 / 29$	$1 / 35$	54.5
			54.3	87	
HG-SR202G1	2.0		$1 / 59$	54.2	87
HG-SR202G1	2.0			54	

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352G1	3.5		87.1	60	
HG-SR352G1	3.5	CHVM-6135	$1 / 6$	$1 / 11$	82.8
			$1 / 17$	80	
HG-SR352G1	3.5		81.5	60	

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR352G1	3.5	CHVM-6165	$1 / 29$	86.6	92
	HG-SR352G1			$1 / 35$	86.3

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352G1	3.5	CHVM-6175	$1 / 43$	105	134
			104	134	

[Unit: mm]

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502G1	5.0		141	165	
HG-SR502G1	5.0	CHVM-6180	$1 / 29$	$1 / 35$	140
			$1 / 43$	165	
HG-SR502G1	5.0		139	165	

[Unit: mm]

For reverse rotation command
For forward rotation command

BC41131*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502G1	5.0	CHVM-6185	$1 / 59$	138	165

[Unit: mm]

Rotation direction
For forward rotation command

(Side view of motor only)

Motor flange direction
Sher supply connector section view AA
Motor flange direction \longrightarrow

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702G1	7.0	CHVM-6165	$1 / 6$	177	103

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702G1	7.0	CHVM-6170	$1 / 11$	190	145
			182	145	

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702G1	7.0	CHVM-6180	$1 / 29$	192	172
			192	172	

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

(Side view of motor only)

Power supply connector Motor flange direction \longrightarrow

Shaft section view AA

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR702G1	7.0	CHVM-6195	$1 / 43$	267	240
	HG-SR702G1			$1 / 59$	266
2	240				

[Unit: mm]

7.7.4 For general industrial machine with a reducer (with an electromagnetic brake)

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR52BG1	0.5	CNVM-6100	1/6	8.5	10.3	20
HG-SR52BG1	0.5		1/11	8.5	9.85	20
HG-SR52BG1	0.5		1/17	8.5	9.73	20
HG-SR52BG1	0.5		1/29	8.5	9.67	20

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR52BG1	0.5	CNVM-6120	1/35	8.5	10.5	29
HG-SR52BG1	0.5		1/43	8.5	10.4	29
HG-SR52BG1	0.5		1/59	8.5	10.4	29

7. HG-SR SERIES

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR102BG1	1.0	CNVM-6120	1/6	8.5	17.0	32
HG-SR102BG1	1.0		1/11	8.5	15.5	32
HG-SR102BG1	1.0		1/17	8.5	15.1	32
HG-SR102BG1	1.0		1/29	8.5	14.8	32
HG-SR102BG1	1.0		1/35	8.5	14.8	32

[Unit: mm]

For reverse rotation command Rotation direction

For forward rotation command

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG1	1.0	CHVM-6130	$1 / 43$	8.5	16.0	51

[Unit: mm]
For reverse rotation command Rotation direction

For forward rotation command

Shaft section view AA

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG1	1.0	CHVM-6160	$1 / 59$	8.5	21.3	83

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR152BG1	1.5	CNVM-6120	1/6	8.5	21.4	33
HG-SR152BG1	1.5		1/11	8.5	19.9	33
HG-SR152BG1	1.5		1/17	8.5	19.5	33

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG1	1.5	CHVM-6130	$1 / 29$	8.5	20.6	52
			8.5	20.5	52	

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG1	1.5	CHVM-6160	$1 / 43$	8.5	25.8	84
			8.5	25.7	84	

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR202BG1	2.0	CNVM-6120	1/6	44	59.4	42
HG-SR202BG1	2.0		1/11	44	57.8	42
HG-SR202BG1	2.0		1/17	44	57.5	42

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR202BG1	2.0	CHVM-6165	1/29	44	64.2	93
HG-SR202BG1	2.0		1/35	44	63.9	93
HG-SR202BG1	2.0		1/43	44	63.7	93
HG-SR202BG1	2.0		1/59	44	63.6	93

[Unit: mm]
For reverse rotation command

Rotation direction
For forward rotation command

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR352BG1	3.5	CHVM-6135	1/6	44	96.5	66
HG-SR352BG1	3.5		1/11	44	92.2	66
HG-SR352BG1	3.5		1/17	44	90.9	66

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352BG1	3.5	CHVM-6165	$1 / 29$	44	96.0	98
			44	95.7	98	

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352BG1	3.5	CHVM-6175	$1 / 43$	44	114	140
			44	113	140	

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502BG1	5.0		44	135	102	
HG-SR502BG1	5.0	CHVM-6165	$1 / 6$	$1 / 11$	44	123
HG-SR502BG1	5.0		$1 / 17$	44	102	
			102	102		

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR502BG1	5.0	CHVM-6180	1/29	44	150	171
HG-SR502BG1	5.0		1/35	44	150	171
HG-SR502BG1	5.0		1/43	44	149	171

[Unit: mm]

For reverse rotation command Rotation direction

For forward rotation command

Shaft section view AA

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass $[\mathrm{kg}]$
HG-SR502BG1	5.0	CHVM-6185	$1 / 59$	44	177	

[Unit: mm]

For reverse rotation command
Rotation direction
For forward rotation For forward rotation command

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG1	7.0	CHVM-6165	$1 / 6$	44	187	109

[Unit: mm]
 For reverse rotation command
Rotation direction
For forward rotation command

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG1	7.0	CHVM-6170	$1 / 11$	44	199	151
			44	152	15	

Electromagnetic brake connector Power supply connector
Motor flange direction $\longrightarrow \quad$ Motor flange direction \longrightarrow Shaft section view AA
BC41202*

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG1	7.0	CHVM-6180	$1 / 29$	44	202	178
			44	201	178	

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG1	7.0	CHVM-6195	$1 / 43$	44	277	246
			44	275	246	

[Unit: mm]

7. HG-SR SERIES

7.7.5 For general industrial machine with a reducer (foot-mounting/without an electromagnetic brake)

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR52G1H	0.5	CNHM-6100	1/6	8.08	20
HG-SR52G1H	0.5		1/11	7.65	20
HG-SR52G1H	0.5		1/17	7.53	20
HG-SR52G1H	0.5		1/29	7.47	20

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR52G1H	0.5		8.26	28	
HG-SR52G1H	0.5	CNHM-6120	$1 / 35$	$1 / 43$	8.22
			$1 / 59$	8.18	28
				28	

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR102G1H	1.0	CNHM-6120	1/6	14.8	31
HG-SR102G1H	1.0		1/11	13.3	31
HG-SR102G1H	1.0		1/17	12.9	31
HG-SR102G1H	1.0		1/29	12.6	31
HG-SR102G1H	1.0		1/35	12.6	31

[Unit: mm]

Power supply connector Motor flange direction \rightarrow

For reverse rotation command
 Rotation direction
 For forward rotation command

Shaft section view AA

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass [kg]
HG-SR102G1H	1.0	CHHM-6130	$1 / 43$	13.8	50

[Unit: mm]

For reverse rotation command Rotation direction
For forward rotation command

Power supply connector
Motor flange direction

Shaft section view AA

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR102G1H	1.0	CHHM-6160	$1 / 59$	19.1	86

[Unit: mm]

Shaft section view AA
BC41141*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G1H	1.5		19.2	32	
HG-SR152G1H	1.5	CNHM-6120	$1 / 6$	$1 / 11$	17.7
			$1 / 17$	32	
HG-SR152G1H	1.5		17.3	32	

[Unit: mm]

For reverse rotation command
Rotation direction
For forward rotation command

Power supply connector
Motor flange direction \longrightarrow

Shaft section view AA

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G1H	1.5	CHHM-6130	$1 / 29$	18.4	51
			18.3	51	

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G1H	1.5	CHHM-6160	$1 / 43$	23.6	87
			23.5	87	
HG-SR152G1H	1.5		$1 / 5$		

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR202G1H	2.0	CNHM-6120	1/6	50.0	37
HG-SR202G1H	2.0		1/11	48.4	37
HG-SR202G1H	2.0		1/17	48.1	37

[Unit: mm]

(Side view of motor only)

Power supply connecto
Motor flange direction \rightarrow

Shaft section view AA
For reverse rotation command Rotation direction

For forward rotation command

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass [kg]
HG-SR202G1H	2.0	CHHM-6165	1/29	54.8	92
HG-SR202G1H	2.0		1/35	54.5	92
HG-SR202G1H	2.0		1/43	54.3	92
HG-SR202G1H	2.0		1/59	54.2	92

[Unit: mm]

Power supply connector
Motor flange direction \rightarrow

Shaft section view AA

BC41146*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR352G1H	3.5	CHHM-6135	1/6	87.1	61
HG-SR352G1H	3.5		1/11	82.8	61
HG-SR352G1H	3.5		1/17	81.5	61

[Unit: mm]

[Unit: mm]

(Side view of motor only)

Power supply connector Motor flange direction \rightarrow

For reverse rotation command Rotation direction

For forward rotation command

Shaft section view AA
BC41148*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352G1H	3.5	CHHM-6175	$1 / 43$	105	137
			104	137	

[Unit: mm]

Rotation For reverse rotation command Rotation direction
For forward rotation command

Shaft section view AA
BC41149*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502G1H	5.0		126	101	
HG-SR502G1H	5.0	CHHM-6165	$1 / 6$	$1 / 11$	114
			$1 / 17$	101	
HG-SR502G1H	5.0		110	101	

[Unit: mm]

Shaft section view AA
BC41150*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502G1H	5.0		141	178	
HG-SR502G1H	5.0	CHHM-6180	$1 / 29$	$1 / 35$	140
			$1 / 43$	178	
HG-SR502G1H	5.0		139	178	

Shaft section view AA

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR502G1H	5.0	CHHM-6185	$1 / 59$	138	178

Power supply connector Motor flange direction \rightarrow

For reverse rotation command Rotation direction

For forward rotation command

Shaft section view AA
BC41152*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass [kg]
HG-SR702G1H	7.0	CHHM-6165	$1 / 6$	177	108

[Unit: mm]

For reverse rotation command Rotation direction

BC41153*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702G1H	7.0	CHHM-6170	$1 / 11$	190	148
	HG-SR702G1H			$1 / 17$	182

[Unit: mm]

Power supply connector Motor flange direction \rightarrow

Shaft section view AA

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702G1H	7.0	CHHM-6180	$1 / 29$	192	185
			192	185	

[Unit: mm]

Power supply connector
Motor flange direction \rightarrow
$\varphi 80 \mathrm{~h} 6$

Shaft section view AA
BC41155*

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$]	Mass [kg]
HG-SR702G1H	7.0	CHHM-6180	$1 / 43$	267	256
			266	256	

[Unit: mm]

7. HG-SR SERIES

7.7.6 For general industrial machine with a reducer (foot-mounting/with an electromagnetic brake)

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR52BG1H	0.5	CNHM-6100	1/6	8.5	10.3	22
HG-SR52BG1H	0.5		1/11	8.5	9.85	22
HG-SR52BG1H	0.5		1/17	8.5	9.73	22
HG-SR52BG1H	0.5		1/29	8.5	9.67	22

[Unit: mm]

7. HG-SR SERIES

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR52BG1H	0.5	CNHM-6120	1/35	8.5	10.5	30
HG-SR52BG1H	0.5		1/43	8.5	10.4	30
HG-SR52BG1H	0.5		1/59	8.5	10.4	30

[Unit: mm]

7. HG-SR SERIES

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR102BG1H	1.0	CNHM-6120	1/6	8.5	17.0	33
HG-SR102BG1H	1.0		1/11	8.5	15.5	33
HG-SR102BG1H	1.0		1/17	8.5	15.1	33
HG-SR102BG1H	1.0		1/29	8.5	14.8	33
HG-SR102BG1H	1.0		1/35	8.5	14.8	33

[Unit: mm]

Shaft section view AA
BC41207*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG1H	1.0	$\mathrm{CHHM}-6130$	$1 / 43$	8.5	16.0	52

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG1H	1.0	CHHM-6160	$1 / 59$	8.5	21.3	88

[Unit: mm]

CMV1-R2P
Power supply connector

Electromagnetic brake connector Motor flange direction \longrightarrow Motor flange direction \longrightarrow

Shaft section view AA
BC41209*

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR152BG1H	1.5	CNHM-6120	1/6	8.5	21.4	34
HG-SR152BG1H	1.5		1/11	8.5	19.9	34
HG-SR152BG1H	1.5		1/17	8.5	19.5	34

[Unit: mm]

CM 1 Iy
Electromagnetic
CMV gnetic brake
CMV1-R2P
$\frac{\text { Power supply connector }}{\text { MS3102A18-10P }}$

Main key

Electromagnetic brake connecto Motor flange direction \rightarrow

Power supply connector

Shaft section view AA
BC41210*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG1H	1.5	CHHM-6130	$1 / 29$	8.5	20.6	53
			8.5	20.5	53	

[Unit: mm]

Electromagnetic brake connecto Motor flange direction \longrightarrow

Power supply connector Motor flange direction \rightarrow

BC41211*

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG1H	1.5	CHHM-6160	$1 / 43$	8.5	25.8	89
			8.5	25.7	89	

Caution plate
(Side view of motor only)

wer supply connector Power supply connector

Shaft section view $A A$

BC41212*

7. HG-SR SERIES

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR202BG1H	2.0	CNHM-6120	1/6	44	59.4	43
HG-SR202BG1H	2.0		1/11	44	57.8	43
HG-SR202BG1H	2.0		1/17	44	57.5	43

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR202BG1H	2.0	CHHM-6165	1/29	44	64.2	98
HG-SR202BG1H	2.0		1/35	44	63.9	98
HG-SR202BG1H	2.0		1/43	44	63.7	98
HG-SR202BG1H	2.0		1/59	44	63.6	98

[Unit: mm]

7. HG-SR SERIES

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR352BG1H	3.5	CHHM-6135	1/6	44	96.5	67
HG-SR352BG1H	3.5		1/11	44	92.2	67
HG-SR352BG1H	3.5		1/17	44	90.9	67

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352BG1H	3.5	CHHM-6165	$1 / 29$	44	96.0	103
			44	95.7	103	

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352BG1H	3.5	CHHM-6175	$1 / 43$	44	114	143
			44	113	143	

[Unit: mm]

Electromagnetic brake connector Motor flange direction \longrightarrow

Power supply connector

M12 Screw hole depth 24
Mor flange dir
Shaft section view AA
BC41217*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502BG1H	5.0		44	135	107	
HG-SR502BG1H	5.0	CHHM-6165	$1 / 6$	$1 / 11$	44	123
			44	107		
	HG-SR502BG1H			$1 / 17$	44	107

[Unit: mm]

7. HG-SR SERIES

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR502BG1H	5.0	CHHM-6180	1/29	44	150	184
HG-SR502BG1H	5.0		1/35	44	150	184
HG-SR502BG1H	5.0		1/43	44	149	184

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502BG1H	5.0	CHHM-6185	$1 / 59$	44	147	184

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG1H	7.0	CHHM-6165	$1 / 6$	44	187	114

[Unit: mm]

> For reverse rotation command Rotation direction For forward rotation command

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque [$\mathrm{N} \cdot \mathrm{m}$]	Moment of inertia J [$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$]	Mass [kg]
HG-SR702BG1H	7.0	CHHM-6170	1/11	44	199	154
HG-SR702BG1H	7.0		1/17	44	192	154

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG1H	7.0	CHHM-6180	$1 / 29$	44	202	191
			44	201	191	

Model	Output [kW]	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG1H	7.0	CHHM-6195	$1 / 43$	44	277	262
			44	275	262	

[Unit: mm]

7.7.7 Flange-mounting flange output type for precision application compliant (without an electromagnetic brake)

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR52G5	0.5	HPG-20A-05-FOKSAWS-S	$1 / 5$	7.91	7.6
HG-SR52G5	0.5	HPG-20A-11-F0KSAXS-S	$1 / 11$	7.82	7.8

[Unit: mm]
For reverse rotation command
For reverse rotation command
Rotation direction
For forward rotation command

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	$\mathrm{Mass}[\mathrm{kg}]$
HG-SR52G5	0.5	HPG-32A-21-F0MCSYS-S	$1 / 21$	10.2	12
HG-SR52G5	0.5	HPG-32A-33-F0MCSZS-S	$1 / 33$	9.96	12
HG-SR52G5	0.5	HPG-32A-45-F0MCSZS-S	$1 / 45$	9.96	12

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102G5	1.0	HPG-20A-05-FOKSAWS-S	$1 / 5$	12.3	9.0

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	$\mathrm{Mass}[\mathrm{kg}]$
HG-SR102G5	1.0	HPG-32A-11-F0MCSPS-S	$1 / 11$	14.9	13
HG-SR102G5	1.0	HPG-32A-21-F0MCSYS-S	$1 / 21$	14.5	13

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102G5	1.0	HPG-50A-33-F0AABC-S	$1 / 33$	16.3	23
HG-SR102G5	1.0	HPG-50A-45-F0AABC-S	$1 / 45$	16.2	23

[Unit: mm]
For reverse rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR152G5	1.5	HPG-20A-05-FOKSAWS-S	$1 / 5$	16.7	11

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G5	1.5	HPG-32A-11-F0MCSPS-S	$1 / 11$	19.3	14

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G5	1.5	HPG-50A-21-F0AABC-S	$1 / 21$	21.7	24
HG-SR152G5	1.5	HPG-50A-33-F0AABC-S	$1 / 33$	20.7	24
HG-SR152G5	1.5	HPG-50A-45-F0AABC-S	$1 / 45$	20.6	24

[Unit: mm]
For reverse rotation command
Rotation direction
depth 12 For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202G5	2.0	HPG-32A-05-F0PBZI-S	$1 / 5$	51.4	19
HG-SR202G5	2.0	HPG-32A-11-F0PBZJ-S	$1 / 11$	51.2	19

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202G5	2.0	HPG-50A-21-FOBBDF-S	$1 / 21$	53.2	29
HG-SR202G5	2.0	HPG-50A-33-F0BBDF-S	$1 / 33$	52.2	29
HG-SR202G5	2.0	HPG-50A-45-F0BBDF-S	$1 / 45$	52.2	29

[Unit: mm]
For reverse rotation command For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352G5	3.5	HPG-32A-05-F0PBZI-S	$1 / 5$	83.2	24

[Unit: mm]
For reverse rotation command
ion direction
For forward rotation command

Caution plate
Bottom
Top
R
Encoder connect
Encoder connector
CMV1-R10P
ower supply connector MS3102A22-22P
Power supply connector

For forward rotation command

Motor flange direction

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR352G5	3.5	HPG-50A-11-F0BBDF-S	$1 / 11$	86.7	34
HG-SR352G5	3.5	HPG-50A-21-F0BBDF-S	$1 / 21$	85.0	34

[Unit: mm]

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502G5	5.0	HPG-50A-05-F0BBCF-S	$1 / 5$	110	36
HG-SR502G5	5.0	HPG-50A-11-F0BBDF-S	$1 / 11$	108	38

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR702G5	7.0	HPG-50A-05-F0BBCF-S	$1 / 5$	161	43

[Unit: mm]

Note. * is a screw hole for eyebolt (M8).

7. HG-SR SERIES

7.7.8 For precision application with flange mounting, flange output type reducer (with an electromagnetic brake)

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR52BG5	0.5	HPG-20A-05-F0KSAWS-S	$1 / 5$	8.5	10.1	9.5
HG-SR52BG5	0.5	HPG-20A-11-F0KSAXS-S	$1 / 11$	8.5	10.0	9.7

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG5	1.0	HPG-20A-05-FOKSAWS-S	$1 / 5$	8.5	14.5	11

[Unit: mm]
For reverse rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG5	1.0	HPG-32A-11-F0MCSPS-S	$1 / 11$	8.5	17.1	
HG-SR102BG5	1.0	HPG-32A-21-FOMCSYS-S	$1 / 21$	8.5		

[Unit: mm]
For reverse rotation command
Rotation direction $\begin{aligned} & \text { For forward rotation command }\end{aligned}$

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG5	1.5	HPG-50A-33-F0AABC-S	$1 / 33$	8.5	18.5	25
HG-SR102BG5	1.5	HPG-50A-45-F0AABC-S	$1 / 45$	8.5	18.4	25

[Unit: mm]
For reverse rotation command For forw
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG5	1.5	HPG-20A-05-FOKSAWS-S	$1 / 5$	8.5	18	18

[Unit: mm]
For reverse rotation command
Rotation direction For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG5	1.5	HPG-32A-11-F0MCSPS-S	$1 / 11$	8.5	21.5	16

[Unit: mm]
For reverse rotation command Rotation direction For forward rotation command

BC41231*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG5	1.5	HPG-50A-21-F0AABC-S	$1 / 21$	8.5	23.9	26
HG-SR152BG5	1.5	HPG-50A-33-F0AABC-S	$1 / 33$	8.5	22.9	
HG-SR152BG5	1.5	HPG-50A-45-F0AABC-S	$1 / 45$	8.5	22.8	26

[Unit: mm]
For reverse rotation command Rotation direction For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202BG5	2.0	HGP-32A-05-FOPBZI-S	$1 / 5$	44	61.1	25
HG-SR202BG5	2.0	HGP-32A-11-FOPBZJ-S	$1 / 11$	44	60.9	25

[Unit: mm]
For reverse rotation command For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202BG5	2.0	HPG-50A-21-FOBBDF-S	$1 / 21$	44	62.9	35
HG-SR202BG5	2.0	HPG-50A-33-F0BBDF-S	$1 / 33$	44	61.9	
HG-SR202BG5	2.0	HPG-50A-45-FOBBDF-S	$1 / 45$	44	61.9	35

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352BG5	3.5	HPG-32A-05-FOPBZI-S	$1 / 5$	44	92.8	30

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352BG5	3.5	HPG-50A-11-F0BBDF-S	$1 / 11$	44	96.3	40
HG-SR352BG5	3.5	HPG-50A-21-F0BBDF-S	$1 / 21$	44	94.6	40

[Unit: mm]
For reverse rotation command Rotation direction For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502BG5	5.0	HPG-50A-05-F0BBCF-S	$1 / 5$	44	119	42
HG-SR502BG5	5.0	HPG-50A-11-F0BBDF-S	$1 / 11$	44	117	44

[Unit: mm]
direction rotation command
For forward rotation command

Note. *is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG5	7.0	HPG-50A-05-F0BBCF-S	$1 / 5$	44	171	49

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Note. * is a screw hole for eyebolt (M8).

7. HG-SR SERIES

7.7.9 For precision application with flange mounting, shaft output type reducer (without an electromagnetic brake)

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR52G7	0.5	HPG-20A-05-J2KSAWS-S	$1 / 5$	7.95	8.0
HG-SR52G7	0.5	HPG-20A-11-J2KSAXS-S	$1 / 11$	7.82	8.2

[Unit: mm]
For forward rotation command

Power supply connector Motor flange direction
BC41171*

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR52G7	0.5	HPG-32A-21-J2MCSYS-S	$1 / 21$	10.2	13
HG-SR52G7	0.5	HPG-32A-33-J2MCSZS-S	$1 / 33$	9.96	13
HG-SR52G7	0.5	HPG-32A-45-J2MCSZS-S	$1 / 45$	9.96	13

[Unit: mm]

Model	Output [kW]	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR102G7	1.0	HPG-20A-05-J2KSAWS-S	$1 / 5$	12.3	9.4

[Unit: mm]
For reverse rotation command
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102G7	1.0	HPG-32A-11-J2MCSPS-S	$1 / 11$	15.0	15
HG-SR102G7	1.0	HPG-32A-21-J2MCSYS-S	$1 / 21$	14.5	15

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR102G7	1.0	HPG-50A-33-J2AABC-S	$1 / 33$	16.3	26
HG-SR102G7	1.0	HPG-50A-45-J2AABC-S	$1 / 45$	16.3	26

[Unit: mm]
For reverse rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR152G7	1.5	HPG-20A-05-J2KSAWS-S	$1 / 5$	16.7	11

[Unit: mm]
For reverse rotation command
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G7	1.5	HPG-32A-11-J2MCSPS-S	$1 / 11$	19.4	16

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152G7	1.5	HPG-50A-21-J2AABC-S	$1 / 21$	21.7	27
HG-SR152G7	1.5	HPG-50A-33-J2AABC-S	$1 / 33$	20.7	27
HG-SR152G7	1.5	HPG-50A-45-J2AABC-S	$1 / 45$	20.7	27

[Unit: mm]
For reverse rotation command For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202G7	2.0	HPG-32A-05-J2PBZI-S	$1 / 5$	51.7	20
HG-SR202G7	2.0	HPG-32A-11-J2PBZJ-S	$1 / 11$	51.3	21

[Unit: mm]

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202G7	2.0	HPG-50A-21-J2BBDF-S	$1 / 21$	53.3	32
HG-SR202G7	2.0	HPG-50A-33-J2BBDF-S	$1 / 33$	52.2	32
HG-SR202G7	2.0	HPG-50A-45-J2BBDF-S	$1 / 45$	52.2	32

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352G7	3.5	HPG-32A-05-J2PBZI-S	$1 / 5$	83.5	25

[Unit: mm]
For reverse rotation command
Rotation direction For forward rotation command

BC41181*

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352G7	3.5	HPG-50A-11-J2BBDF-S	$1 / 11$	87.0	37
HG-SR352G7	3.5	HPG-50A-21-J2BBDF-S	$1 / 21$	85.1	37

[Unit: mm]
For reverse rotation command For forward rotation command

BC41182*

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR502G7	5.0	HPG-50A-05-J2BBCF-S	$1 / 5$	111	39
HG-SR502G7	5.0	HPG-50A-11-J2BBDF-S	$1 / 11$	108	41

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

BC41183*

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Moment of inertia $\mathrm{J}\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass [kg]
HG-SR702G7	7.0	HPG-50A-05-J2BBCF-S	$1 / 5$	163	46

[Unit: mm]
For reverse rotation command Rotation direction ror retation command For forward rotation command

BC41184*

Note. * is a screw hole for eyebolt (M8).
7.7.10 Flange-mounting shaft output type for precision application compliant (with an electromagnetic brake)

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR52BG7	0.5	HPG-20A-05-J2KSAWS-S	$1 / 5$	8.5	10.2	9.9
HG-SR52BG7	0.5	HPG-20A-11-J2KSAXS-S	$1 / 11$	8.5	10.0	11

[Unit: mm]
For reverse rotation command
Rotation direction ard rotation command For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR52BG7	0.5	HPG-32A-21-J2MCSYS-S	$1 / 21$	8.5	12.4	
HG-SR52BG7	0.5	HPG-32A-33-J2MCSZS-S	$1 / 33$	8.5	15	
HG-SR52BG7	0.5	HPG-32A-45-J2MCSZS-S	$1 / 45$	8.5	15	

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG7	1.0	HPG-20A-05-J2KSAWS-S	$1 / 5$	8.5	14.5	12

[Unit: mm]
For reverse rotation command
Rotation direction
For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG7	1.0	HPG-32A-11-J2MCSPS-S	$1 / 11$	8.5	17.2	
HG-SR102BG7	1.0	HPG-32A-21-J2MCSYS-S	$1 / 21$	8.5	17	

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR102BG7	1.0	HPG-50A-33-J2AABC-S	$1 / 33$	8.5	18.5	28
HG-SR102BG7	1.0	HPG-50A-45-J2AABC-S	$1 / 45$	8.5	28	

[Unit: mm]
For reverse rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG7	1.5	HPG-20A-05-J2KSAWS-S	$1 / 5$	8.5	18.9	13

[Unit: mm]

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG7	1.5	HPG-32A-11-J2MCSPS-S	$1 / 11$	8.5	21.6	18

[Unit: mm]
For reverse rotation command For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR152BG7	1.5	HPG-50A-21-J2AABC-S	$1 / 21$	8.5	23.9	
HG-SR152BG7	1.5	HPG-50A-33-J2AABC-S	$1 / 33$	8.5	29	2.9
HG-SR152BG7	1.5	HPG-50A-45-J2AABC-S	$1 / 45$	8.5	29	29

[Unit: mm]
For reverse rotation command
Rotation direction For forward rotation command

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202BG7	2.0	HPG-32A-05-J2PBZI-S	$1 / 5$	44	61.4	26
HG-SR202BG7	2.0	HPG-32A-11-J2PBZJ-S	$1 / 11$	44	61.0	27

[Unit: mm]
For reverse rotation command For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR202BG7	2.0	HPG-50A-21-J2BBDF-S	$1 / 21$	44	63.0	38
HG-SR202BG7	2.0	HPG-50A-33-J2BBDF-S	$1 / 33$	44	61.9	38
HG-SR202BG7	2.0	HPG-50A-45-J2BBDF-S	$1 / 45$	44	61.9	38

[Unit: mm]
Rotation For reverse rotation command For forward rotation command

BC41248*

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352BG7	3.5	HPG-32A-05-J2PBZI-S	$1 / 5$	44	93.1	31

[Unit: mm]
For reverse rotation command Rotation direction
For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR352BG7	3.5	HPG-50A-11-J2BBDF-S	$1 / 11$	44	96.6	43
HG-SR352BG7	3.5	HPG-50A-21-J2BBDF-S	$1 / 21$	44	94.7	43

[Unit: mm] Rotation direction
For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR502BG7	5.0	HPG-50A-05-J2BBCF-S	$1 / 5$	44	121	45
HG-SR502BG7	5.0	HPG-50A-11-J2BBDF-S	$1 / 11$	44	117	47

[Unit: mm]
For reverse rotation command For forward rotation command

Note. * is a screw hole for eyebolt (M8).

Model	Output $[\mathrm{kW}]$	Reducer model	Reduction ratio	Brake static friction torque $[\mathrm{N} \cdot \mathrm{m}]$	Moment of inertia J $\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	Mass $[\mathrm{kg}]$
HG-SR702BG7	7.0	HPG-50A-05-J2BBCF-S	$1 / 5$	44	173	52

[Unit: mm]

Note. * is a screw hole for eyebolt (M8).

MEMO

App. 1 Servo motor ID codes

Servo motor series ID	Servo motor type ID	Servo motor encoder ID	Servo motor
0101	F053	0044	HG-MR053
	FF13		HG-MR13
	FF23		HG-MR23
	FF43		HG-MR43
	FF73		HG-MR73
	F053		HG-KR053
	FF13		HG-KR13
0111	FF23		HG-KR23
	FF43		HG-KR43
	FF73		HG-KR73
0121	FF51		HG-SR51
	FF81		HG-SR81
	F121		HG-SR121
	F201		HG-SR201
	F301		HG-SR301
	F421		HG-SR421
	FF52		HG-SR52
	F102		HG-SR102
	F152		HG-SR152
	F202		HG-SR202
	F352		HG-SR352
	F502		HG-SR502
	F702		HG-SR702

App. 2 Manufacturer list

Names given in the table are as of June 2012.

Manufacturer	Contact
DDK	DDK Ltd.
TE Connectivity	TE Connectivity Ltd. Company
JAE	Japan Aviation Electronics Industry, Limited
JST	J.S.T. Mfg. Co., Ltd.
3M	3 M
Molex	Molex
Hirose Electric	Hirose Electric Co., Ltd.
Toa Electric Industry	Toa Electric Industry Co. Ltd.
Taiyo Cabletec	Taiyo Cabletec Corporation
JX Nippon Oil \& Energy	JX Nippon Oil \& Energy Corporation
Idemitsu Kosan	Idemitsu Kosan Co., Ltd
Exxon Mobil	Exxon Mobil Corporation
Cosmo Oil	Cosmo Oil Co., Ltd.
Shell Oil	Shell Oil Company
Harmonic Drive Systems	Harmonic Drive Systems Inc.

App. 3 Compliance with the CE marking

App. 3.1 What is CE marking?

The CE marking is mandatory and must be affixed to specific products placed on the European Union. When a product conforms to the requirements, the CE marking must be affixed to the product. The CE marking also applies to machines and equipment incorporating servos.
(1) EMC directive

The EMC directive applies to the servo motor alone. Therefore servo motor is designed to comply with the EMC directive. The EMC directive also applies to machines and equipment incorporating servo motors.
(2) Low voltage directive

The low voltage directive also applies to the servo motor alone. The servo motor is designed to comply with the low voltage directive.

App. 3.2 For compliance

Be sure to perform an appearance inspection of every unit before installation. In addition, have a final performance inspection on the entire machine/system, and keep the inspection record.
(1) Wiring

Use wirings which complies with EN for the servo motor power. Complying EN products are available as options. Refer to chapter 5 for details of the options.
(2) Performing EMC tests

When EMC tests are run on a machine and device into which the servo motor and servo motor have been installed, it must conform to the electromagnetic compatibility (immunity/emission) standards after it has satisfied the operating environment and electrical equipment specifications.
For EMC directive conforming methods about servo amplifiers and servo motors, refer to the EMC Installation Guidelines (IB(NA)67310) and each Servo Amplifier Instruction Manual.

App. 4 Compliance with UL/CSA standard

Use the UL/CSA standard-compliant model of servo motor. For the latest information of compliance, contact your local sales office.
Unless otherwise specified, the handling, performance, specifications, etc. of the UL/CSA standardcompliant models are the same as those of the standard models.
(1) Flange size

The servo motor is compliant with the UL/CSA standard when it is mounted on the flanges made of aluminum whose sizes are indicated in the following table.
The rated torque of the servo motor under the UL/CSA standard indicates the continuous permissible torque value that can be generated when it is mounted on the flange specified in this table and used in the environment of $0{ }^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ambient temperature. Therefore, to conform to the UL/CSA standard, mount the servo motor on a flange with a heat radiating effect equivalent to that of this flange.

Flange size $[\mathrm{mm}]$	Servo motor	
	HG-MR/HG-KR	HG-SR
$250 \times 250 \times 6$	$053 / 13 / 23$	
$250 \times 250 \times 12$	43	$51 / 81$ 52 to 152
$300 \times 300 \times 12$	73	
$300 \times 300 \times 20$		$121 / 201$
		$202 / 352$
$650 \times 650 \times 35$		$301 / 421$
		$502 / 702$

(2) Selection example of wires

To comply with the UL/CSA standard, use UL-approved copper wires rated at $75^{\circ} \mathrm{C}$ for wiring.
The following table shows wires [AWG] rated at $75^{\circ} \mathrm{C}$.

Servo motor	Wire [AWG]	
	1) $U / V / W / \oplus$	2) B1/B2
HG-MR053	14 (Note 1)	16 (Note 1)
HG-MR13		
HG-MR23		
HG-MR43		
HG-MR73		
HG-KR053		
HG-KR13		
HG-KR23		
HG-KR43		
HG-KR73		
HG-SR51	14	16
HG-SR81		
HG-SR121		
HG-SR201		
HG-SR301	12	
HG-SR421	10 (Note 2)	
HG-SR52	14	
HG-SR102		
HG-SR152		
HG-SR202		
HG-SR352	12	
HG-SR502	10 (Note 2)	
HG-SR702	8 (Note 2)	

Note 1. For fabricating extension cables
2. Refer to each servo amplifier instruction manual for crimp terminals and crimping tools used for connection with the servo amplifier.

App. 5 Calculation methods for designing

5.1 Specification symbol list

The following symbols are required for selecting the proper servo.

[^2]App. 5.2 Position resolution and electronic gear setting
Position resolution (travel distance per pulse Δl) is determined by travel distance per servo motor revolution ΔS and the number of encoder feedback pulses P_{f}, and is represented by Equation 5.1. As the number of feedback pulses depends on the servo motor series, refer to standard specifications in the chapter of each servo motor series.
$\Delta I=\frac{\Delta S}{P_{f}}$
$\Delta \mathrm{l}$: Travel distance per pulse [mm/pulse]
$\Delta \mathrm{S}$: Travel distance per servo motor revolution [$\mathrm{mm} / \mathrm{rev}$]
P_{f} : Number of feedback pulses [pulse/rev]

Since Δl has the relation represented by equation 5.1 , its value is fixed in the control system after the drive system and encoder have been determined. However, travel distance per command pulse can be set as desired using the parameters.

As shown above, command pulses are multiplied by CMX/CDV set in the parameters to be position control pulses. Travel distance per command pulse ΔI_{0} is expressed by Equation 5.2.
$\Delta \mathrm{I}_{0}=\frac{\Delta \mathrm{S}}{\mathrm{P}_{\mathrm{f}}} \cdot \frac{\mathrm{CMX}}{\mathrm{CDV}}=\Delta \mathrm{I} \cdot \frac{\mathrm{CMX}}{\mathrm{CDV}}$

CMX : Electronic gear (command pulse multiplication numerator)
CDV : Electronic gear (command pulse multiplication denominator)

Using the above relation, travel distance per command pulse can be set to a value without fraction.

[Setting example]

Find a parameter value for $\Delta \mathrm{I}_{0}=0.001 \mathrm{~mm} /$ pulse in a drive system where ball screw lead $\mathrm{P}_{\mathrm{B}}=10 \mathrm{~mm}$ and reduction ratio $1 / n=1$.
The encoder feedback pulses P_{f} of the HG-KR $=4194304$ pulses/rev.
Since $\Delta S=10 \mathrm{~mm} / \mathrm{rev}$, the following is obtained according to equation 5.2.
$\frac{\mathrm{CMX}}{\mathrm{CDV}}=\Delta \mathrm{I}_{0} \cdot \frac{\mathrm{P}_{\mathrm{f}}}{\Delta \mathrm{S}}=0.001 \cdot \frac{4194304}{10}=\frac{262144}{625}$

Relation between position resolution Δl and overall accuracy
Positioning accuracy of machine is the sum of electrical errors and mechanical errors. Normally, provisions should be made so that positioning accuracy are not affected by electrical system errors. As a guideline, Equation 5.3 should be satisfied.
$\Delta \mathrm{I}<\left[\frac{1}{5} \sim \frac{1}{10}\right] \cdot \Delta \varepsilon$
$\Delta \mathrm{l}$: Travel distance per feedback pulse [mm/pulse]
$\Delta \varepsilon$: Positioning accuracy [mm]

App. 5.3 Speed and command pulse frequency
The servo motor is run at a speed where the command pulses and feedback pulses are equivalent.
Therefore, the command pulse frequency and feedback pulse frequency are equivalent. The following shows the relation including the parameter settings (CMX and CDV). (Refer to the following diagram.)
$f_{0} \cdot \frac{C M X}{C D V}=P_{f} \cdot \frac{N_{0}}{60}$

f_{0} : Command pulse frequency [pps] (differential line driver)
CMX: Electronic gear
(command pulse multiplication numerator)
CDV: Electronic gear
(command pulse multiplication denominator)
N_{0} : Servo motor speed [r/min]
P_{f} : Number of feedback pulses [pulse/rev] ($\mathrm{P}_{\mathrm{f}}=4194304$ for HG-KR)

According to equation 5.4, the following equations may be used to obtain the electronic gear and command pulse frequency to rotate the servo motor at N_{0}.

- Electronic gear

$$
\begin{equation*}
\frac{C M X}{C D V}=P_{f} \cdot \frac{N_{0}}{60} \cdot \frac{1}{f_{0}} \tag{5.5}
\end{equation*}
$$

- Command pulse frequency
$\mathrm{f}_{0}=\mathrm{P}_{\mathrm{f}} \cdot \frac{\mathrm{N}_{0}}{60} \cdot \frac{\mathrm{CDV}}{\mathrm{CMX}}$

APPENDIX

[Setting example]

Obtain the command pulse frequency required to run the HG-KR at $3000 \mathrm{r} / \mathrm{min}$.
The following result will be found according to equation 5.6.

$$
\begin{aligned}
\mathrm{f}_{0} & =4194304 \cdot \frac{\mathrm{~N}_{0}}{60} \cdot \frac{\mathrm{CDV}}{\mathrm{CMX}} \\
& \text { (Command pulse frequency) } \\
& =4194304 \cdot \frac{3000}{60} \cdot 1 \\
& =209715200[\mathrm{pps}]
\end{aligned}
$$

However, as the maximum input command pulse frequency in the differential line driver system is 4 Mpps for MR-J4 servo amplifier, 209715200 pps cannot be entered.
To run the servo motor at the speed of $3000 \mathrm{r} / \mathrm{min}$ at not more than 4 Mpps , the electronic gear setting must be changed. This electronic gear is found by equation 5.5.
$\frac{C M X}{C D V}=4194304 \cdot \frac{3000}{60} \cdot \frac{1}{4 \cdot 10^{6}}$
(Electronic gear)

$$
=\frac{32768}{625}
$$

Therefore, the parameters are set to $C M X=32768$ and CDV $=625$.

5.4 Stopping characteristics

(1) Droop pulses (ε)

When you use a pulse train command to run the servo motor, the relation between the command pulse frequency and servo motor speed will be as follows. The difference between the command pulses and feedback pulses during acceleration are called droop pulses, which are accumulated in the servo amplifier deviation counter. Equation 5.7 defines a relation between the command pulse frequency (f) and position control gain $1(\mathrm{Kp})$.
$\varepsilon \approx \frac{\mathrm{f}_{0}}{\mathrm{~K}_{\mathrm{p}}}$ [pulse]
Supposing that the value of position control gain 1 is $70 \mathrm{rad} / \mathrm{s}$, the droop pulses during operation will be as follows at the command pulse frequency of 200 kpps according to equation 5.7.
$\varepsilon \approx \frac{200 \cdot 10^{3}}{70} \approx 2858$ [pulses]

(2) Settling time $\left(t_{s}\right)$ during linear acceleration/deceleration

Since droop pulses still exist regardless of zero command pulse, settling time $\left(\mathrm{t}_{\mathrm{s}}\right)$ is required until the servo motor stops.
Set the operation pattern in consideration for the settling time.
The settling time $\left(\mathrm{t}_{\mathrm{s}}\right)$ value is obtained according to equation 5.8.

$$
\begin{align*}
\mathrm{t}_{\mathrm{s}} & \approx 3 \cdot \mathrm{~T}_{\mathrm{p}} \\
& =3 \cdot \frac{1}{\mathrm{~K}_{\mathrm{p}}}[\mathrm{~s}] . \tag{5.8}
\end{align*}
$$

*When $\mathrm{K}_{\mathrm{p}}=70[\mathrm{rad} / \mathrm{s}], \mathrm{t}_{\mathrm{s}} \approx 0.04[\mathrm{~s}]$.(above diagram)
The settling time $\left(t_{s}\right)$ indicates the time required for the servo motor to stop in the necessary positioning accuracy range. This does not always mean that the servo motor has stopped completely. Thus, especially when the servo motor is used in high-duty operation and positioning accuracy has no margin for travel distance per pulse (ΔI), the value obtained by equation 5.8 must be increased.
The settling time $\left(\mathrm{t}_{\mathrm{s}}\right)$ will vary with the moving part conditions. Especially when the load friction torque is large, movement may be unstable near the stopping position.

App. 5.5 Capacity selection

As a first step, confirm the load conditions and temporarily select the servo motor capacity.
Then, determine the operation pattern, calculate required torques according to the following equations, and check that the servo motor of the initially selected capacity may be used for operation .
(1) Initial selection of servo motor capacity

After calculating the load torque $\left(T_{L}\right)$ and load moment of inertia $\left(J_{L}\right)$, select a servo motor which will satisfy the following two relations.

Servo motor rated torque $>\mathrm{T}_{\mathrm{L}}$
Servo motor $J_{M}>J_{L} / m$
$\mathrm{m}=3$: High duty (more than 100 times/min.)
Settling time; 40 ms or less
$m=5$: Middle frequency (60 times $/ \mathrm{min}$. to 100 times $/ \mathrm{min}$.)
Settling time; 100 ms or less
$m=$ Permissible load moment of inertia: Low duty (less than 60 times $/ \mathrm{min}$.)
Settling time; more than 100 ms

Find the acceleration and deceleration torques and continuous effective load torque as described in (2) to make a final selection. For high-duty positioning, the load moment of inertia $\left(\mathrm{J}_{\mathrm{L}}\right)$ value should be as small as possible.
If positioning is infrequent as in line control, the load moment of inertia $\left(\mathrm{J}_{\mathrm{L}}\right)$ value may be slightly larger than in the above conditions.

APPENDIX

(2) Acceleration and deceleration torques

The following equations are used to calculate the acceleration and deceleration torques in the following operation pattern.

- Acceleration torque $T_{a}=\frac{\left(\mathrm{J}_{\mathrm{L}}+\mathrm{J}_{\mathrm{M}}\right) \cdot \mathrm{N}_{0}}{9.55 \cdot 10^{4}} \cdot \frac{1}{\mathrm{t}_{\mathrm{psa}}}$
- Deceleration torque $\mathrm{T}_{\mathrm{d}}=\frac{\left(\mathrm{J}_{\mathrm{L}}+\mathrm{J}_{\mathrm{M}}\right) \cdot \mathrm{N}_{0}}{9.55 \cdot 10^{4}} \cdot \frac{1}{\mathrm{t}_{\mathrm{psd}}}$.
(3) Torques required for operation

POINT

For the gain adjustment, check that the machine operates below the maximum torque of the servo motor. It is recommended that generated torque during operation is under 90% of the maximum torque of the servo motor.

Torques required for the servo motor are the highest during acceleration. If the servo motor torque found with equation 5.11 to 5.13 exceed the maximum torque, the motor will not accelerate as commands. Set the calculated value within the servo motor's maximum torque. Since a friction load is normally applied during deceleration, only the acceleration torque needs to be considered. In the regenerative mode, the value found by equation 5.13 is negative.

$$
\begin{align*}
& \mathrm{T}_{1}=\mathrm{T}_{\mathrm{Ma}}=\mathrm{T}_{\mathrm{a}}+\mathrm{T}_{\mathrm{L}} \cdot . \tag{5.11}\\
& \mathrm{T}_{2}=\mathrm{T}_{\mathrm{L}} \cdots \cdots \cdots \cdots \cdots \tag{5.12}\\
& \mathrm{~T}_{3}=\mathrm{T}_{\mathrm{Md}}=-\mathrm{T}_{\mathrm{d}}+\mathrm{T}_{\mathrm{L}} . \tag{5.13}
\end{align*}
$$

(4) Continuous effective load torque

If the torque required for the servo motor changes with time, the continuous effective load torque should be lower than the rated torque of the servo motor. There may be a servo motor torque delay at the start of acceleration or deceleration due to a delay in the control system. To simplify the calculation, however, it is assumed that constant acceleration and deceleration torques are applied during $t_{\text {psa }}$ and $t_{\text {psd }}$. The following equation is used to calculate the continuous effective load torque in the following operation pattern. T_{LH} indicates the torque applied during a servo motor stop. A large torque may be applied especially during a stop in vertical motion applications, and this must be fully taken into consideration. During vertical drive, the unbalanced torque T_{U} will become $T_{\text {LH }}$.

$T_{\text {rms }}=\sqrt{\frac{T_{M a}{ }^{2} \cdot \mathrm{t}_{\mathrm{psa}}+\mathrm{T}_{\mathrm{L}}{ }^{2} \cdot \mathrm{t}_{\mathrm{c}}+\mathrm{T}_{\mathrm{Md}}{ }^{2} \cdot \mathrm{t}_{\mathrm{psd}}+\mathrm{T}_{\mathrm{LH}}{ }^{2} \cdot \mathrm{tl}}{\mathrm{t}_{\mathrm{f}}}}$

App. 5.6 Load torque equations

Typical load torque equations are indicated below.

Type	Mechanism	Equation
Linear movement	Servo motor	$\begin{equation*} \mathrm{T}_{\mathrm{L}}=\frac{\mathrm{F}}{2 \cdot 10^{3} \cdot \pi \cdot \eta} \cdot \frac{\mathrm{~V}}{\mathrm{~N}}=\frac{\mathrm{F} \cdot \Delta \mathrm{~S}}{2 \cdot 10^{3} \cdot \pi \cdot \eta} \cdots \ldots \tag{5.15} \end{equation*}$ F : Force in the axial direction of the machine in linear motion [N] F in equation 5.15 is obtained with equation 5.16 when the table is moved, for example, as shown in the left diagram. $\begin{equation*} F=F_{c}+\mu \cdot\left(W \cdot g+F_{G}\right) . \tag{5.16} \end{equation*}$ F_{c} : Force applied in the axial direction of the moving part [N] F_{G} : Tightening force of the table guide surface $[\mathrm{N}]$ W: Full mass of the moving part [kg]
Rotary movement		$\begin{equation*} T_{L}=\frac{1}{n} \cdot \frac{1}{\eta} \cdot T_{L 0}+T_{F} \tag{5.17} \end{equation*}$ T_{F} : Load friction torque converted into equivalent value on servo motor shaft [$\mathrm{N} \cdot \mathrm{m}$]
Vertical movement		During rise $\begin{equation*} T_{L}=T_{U}+T_{F} \tag{5.18} \end{equation*}$ During fall $\begin{equation*} T_{L}=-T_{U} \cdot \eta^{2}+T_{F} . \tag{5.19} \end{equation*}$ T_{F} : Friction torque of the moving part $[\mathrm{N} \cdot \mathrm{m}]$ $\begin{align*} & \mathrm{T}_{U}=\frac{\left(\mathrm{W}_{1}-\mathrm{W}_{2}\right) \cdot \mathrm{g}}{2 \cdot 10^{3} \cdot \pi \cdot \eta} \cdot \frac{\mathrm{~V}}{\mathrm{~N}}=\frac{\left(\mathrm{W}_{1}-\mathrm{W}_{2}\right) \cdot \mathrm{g} \cdot \Delta \mathrm{~S}}{2 \cdot 10^{3} \cdot \pi \cdot \eta} \tag{5.20}\\ & \mathrm{~T}_{\mathrm{F}}=\frac{\mu\left(\mathrm{W}_{1}-\mathrm{W}_{2}\right) \cdot \mathrm{g} \cdot \Delta \mathrm{~S}}{2 \cdot 10^{3} \cdot \pi \cdot \eta} . \ldots \tag{5.21} \end{align*}$ W_{1} : Mass of load [kg] W_{2} : Mass of counterweight [kg]

App. 5.7 Load moment of inertia equations

Typical load moment of inertia equations is indicated below.

Type	Mechanism	Equation
Cylinder	Axis of rotation is on the cylinder center	$\begin{equation*} J_{L 0}=\frac{\pi \cdot \rho \cdot L}{32} \cdot\left(D_{1}^{4}-D_{2}^{4}\right)=\frac{W}{8} \cdot\left(D_{1}^{2}+D_{2}^{2}\right) \tag{5.22} \end{equation*}$ ρ : Cylinder material density $\left[\mathrm{kg} / \mathrm{cm}^{3}\right.$] L: Cylinder length [cm] D_{1} : Cylinder outside diameter [cm] D_{2} : Cylinder inside diameter [cm] W: Cylinder mass [kg] Reference data: material density Iron: $7.8 \cdot 10^{-3}\left[\mathrm{~kg} / \mathrm{cm}^{3}\right]$ Aluminum: $2.7 \cdot 10^{-3}\left[\mathrm{~kg} / \mathrm{cm}^{3}\right]$ Copper: $8.96 \cdot 10^{-3}\left[\mathrm{~kg} / \mathrm{cm}^{3}\right]$
	Axis of rotation is on the cylinder center	
Square block		$\mathrm{J}_{\mathrm{L} 0}=\mathrm{W} \cdot\left(\frac{\mathrm{a}^{2}+\mathrm{b}^{2}}{3}+\mathrm{R}^{2}\right) .$ W: Square block mass [kg] a, b, R : Left diagram [cm]
Object which moves linearly		$J_{\mathrm{L}}=W \cdot\left(\frac{\mathrm{~V}}{600 \cdot \omega}\right)^{2}=W \cdot\left(\frac{1}{2 \cdot \pi \cdot N} \cdot \frac{V}{10}\right)^{2}=W \cdot\left(\frac{\Delta S}{20 \cdot \pi}\right)^{2}$ V : Speed of object which moves linearly [$\mathrm{mm} / \mathrm{min}$] $\Delta \mathrm{S}$: Travel distance of object moving linearly per servo motor revolution [$\mathrm{mm} / \mathrm{rev}$] W: Square block mass [kg]
Object that is hung with pulley		$\begin{equation*} J_{L}=W \cdot\left(\frac{D}{2}\right)^{2}+J_{P} \tag{5.26} \end{equation*}$ JP: Pulley moment of inertia $\left[\mathrm{kg} \cdot \mathrm{cm}^{2}\right]$ D: Pulley diameter [cm] W: Square block mass [kg]
Converted load	Load B	$\begin{equation*} J_{L}=J_{11}+\left(J_{21}+J_{22}+J_{A}\right) \cdot\left(\frac{N_{2}}{N_{1}}\right)^{2}+\left(J_{31}+J_{B}\right) \cdot\left(\frac{N_{3}}{N_{1}}\right)^{2} \tag{5.27} \end{equation*}$ J_{A}, J_{B} : Moment of inertia of load $A, B\left[\mathrm{~kg} \mathrm{~cm}^{2}\right]$ J_{11} to J_{31} : Moment of inertia $\left[\mathrm{kg} \cdot \mathrm{cm}^{2}\right.$] N_{1} to N_{3} : Speed of each shaft [r/min]

App. 5.8 Precautions for home position return

When a general positioning unit is used, the sequence of events is as shown in the following figure.

When determining the on duration of the proximity dog, consider the deceleration time so that the speed reaches the creep speed.
(1) When determining the on duration of the proximity dog, consider the delay time of the control section and the deceleration time so that the creep speed is attained. If the proximity dog signal switches off during deceleration, precise home position return cannot be performed.

Travel distance L_{1} in the chart can be obtained by equation 5.28.
$L_{1}=\frac{1}{60} \cdot V_{1} \cdot t_{1} \cdot+\frac{1}{120} \cdot V_{1} \cdot t_{d} \cdot\left\{1-\left(\frac{V_{2}}{V_{1}}\right)^{2}\right\}+\frac{1}{60} \cdot V_{1} \cdot T_{P} \cdot$

On duration of the proximity dog $L_{D}[\mathrm{~mm}]$ must be longer than L_{1} obtained by equation 5.28 , as indicated in equation 5.29.
$L_{D}>L_{1}$
where,
$\mathrm{V}_{1}, \mathrm{~V}_{2}$: As shown in the chart [$\mathrm{mm} / \mathrm{min}$]
t_{1}, t_{d} : As shown in the chart [s]
L_{1} : As shown in the chart [mm]
L_{D} : As shown in the chart [mm]
(2) Set the end (off position) of the proximity dog signal at the middle of two on positions (lows) of the zero pulse signal. If it is set near either on position of the zero pulse signal, the positioning unit is liable to misdetect the zero pulse signal. In this case, a fault will occur, e.g. the home position will shift by one revolution of the servo motor.

App. 5.9 Selection example

(1) Selection of control parameters

Setting of electronic gear (command pulse multiplication numerator/denominator)
There is the following relation between the electronic gear and command resolution Δl_{0}.
$\Delta \mathrm{l}_{0}=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{f}} \cdot \mathrm{n}} \cdot\left(\frac{\mathrm{CMX}}{\mathrm{CDV}}\right)$

When the above machining specifications are substituted in the above equation
$0.001=\frac{16}{4194304 \cdot 8 / 5} \cdot \frac{C M X}{C D V}$
$\frac{C M X}{C D V}=\frac{1}{1000} \cdot \frac{4194304 \cdot 8 / 5}{16}=\frac{262144}{625}$
$\frac{\text { CMX }}{\text { CDV }}$ Acceptable as CMX/CDV is within $1 / 10$ to 4000
(2) Servo motor speed
$N_{0}=\frac{V_{0}}{P_{B}} \cdot \frac{1}{1 / \mathrm{n}}=\frac{30000}{16} \cdot \frac{8}{5}=3000[\mathrm{r} / \mathrm{min}]$
(3) Acceleration/deceleration time constant
$t_{\mathrm{psa}}=\mathrm{t}_{\mathrm{psd}}=\mathrm{t}_{0}-\frac{\mathrm{l}}{\mathrm{V}_{0} / 60}-\mathrm{t}_{\mathrm{s}}=0.05[\mathrm{~s}]$
t_{s} : Settling time (Here, this is assumed to be 0.15 s .)
(4) Operation pattern

(5) Load torque (converted into equivalent value on servo motor shaft) Travel distance per servo motor revolution
$\Delta S=P_{B} \cdot \frac{1}{n}=16 \cdot \frac{5}{8}=10[\mathrm{~mm}]$
$\mathrm{T}_{\mathrm{L}}=\frac{\mu \cdot \mathrm{W} \cdot \mathrm{g} \cdot \Delta \mathrm{S}}{2 \cdot 10^{3} \cdot \pi \cdot \mathrm{\eta}}=\frac{0.2 \cdot 60 \cdot 9.8 \cdot 10}{2 \cdot 10^{3} \cdot 3.14 \cdot 0.8}=0.23[\mathrm{~N} \cdot \mathrm{~m}]$
(6) Load moment of inertia (converted into equivalent value on servo motor shaft)

Moving part
$\mathrm{J}_{\mathrm{L} 1}=\mathrm{W} \cdot\left(\frac{\Delta \mathrm{S} \cdot 10^{-3}}{2 \pi}\right)^{2}=1.52 \cdot 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$

Ball screw
$J_{L 2}=\frac{\pi \cdot \rho \cdot L_{B}}{32} \cdot D_{B}{ }^{4} \cdot\left(\frac{1}{\mathrm{n}}\right)^{2}=0.24 \cdot 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
$\rho=7.8 \cdot 10^{3}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$ (iron)

Gear (servo motor shaft)
$\mathrm{J}_{\mathrm{L} 3}=\frac{\pi \cdot \rho \cdot \mathrm{L}_{\mathrm{G}}}{32} \cdot \mathrm{D}_{\mathrm{G} 1}{ }^{4}=0.03 \cdot 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$

Gear (load shaft)
$\mathrm{J}_{\mathrm{L} 4}=\frac{\pi \cdot \rho \cdot \mathrm{L}_{\mathrm{G}}}{32} \cdot \mathrm{D}_{\mathrm{G} 2}{ }^{4} \cdot\left(\frac{1}{\mathrm{n}}\right)^{2}=0.08 \cdot 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$

Full load moment of inertia (converted into equivalent value on servo motor shaft)
$\mathrm{J}_{\mathrm{L}}=\mathrm{J}_{\mathrm{L} 1}+\mathrm{J}_{\mathrm{L} 2}+\mathrm{J}_{\mathrm{L} 3}+\mathrm{J}_{\mathrm{L} 4}=1.9 \cdot 10^{-4}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$
(7) Temporary selection of servo motor Selection conditions
(a) Load torque < servo motor rated torque
(b) Full load moment of inertia $<J_{R} \cdot$ moment of inertia of the servo motor J_{R} : Recommended load to motor inertia ratio
According to above conditions, HG-KR23 (rated torque: $0.64 \mathrm{~N} \cdot \mathrm{~m}$, maximum torque: $2.2 \mathrm{~N} \cdot \mathrm{~m}$, moment of inertia: $0.221 \cdot 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$) is selected temporarily.
(8) Acceleration/deceleration torque

Torque necessary for acceleration
$T_{M a}=\frac{\left(\mathrm{J}_{\mathrm{L}}+\mathrm{J}_{\mathrm{M}}\right) \cdot \mathrm{N}_{0}}{9.55 \cdot 10^{4} \cdot \mathrm{t}_{\mathrm{psa}}}+\mathrm{T}_{\mathrm{L}}=1.56[\mathrm{~N} \cdot \mathrm{~m}]$
J_{M} : Moment of inertia of the servo motor

Torque necessary for deceleration
$T_{M d}=\frac{-\left(\mathrm{J}_{\mathrm{L}}+\mathrm{J}_{\mathrm{M}}\right) \cdot \mathrm{N}_{0}}{9.55 \cdot 10^{4} \cdot \mathrm{t}_{\text {psd }}}+\mathrm{T}_{\mathrm{L}}=-1.10[\mathrm{~N} \cdot \mathrm{~m}]$

The torque required for the servo motor during acceleration/deceleration must be lower than the servo motor's maximum torque.
(9) Continuous effective load torque
$\mathrm{T}_{\mathrm{rms}}=\sqrt{\frac{\mathrm{T}_{\mathrm{Ma}}{ }^{2} \cdot \mathrm{t}_{\mathrm{psa}}+\mathrm{T}_{\mathrm{L}}{ }^{2} \cdot \mathrm{t}_{\mathrm{c}}+\mathrm{T}_{\mathrm{Md}}{ }^{2} \cdot \mathrm{t}_{\mathrm{psd}}}{\mathrm{t}_{\mathrm{f}}}}=0.38[\mathrm{~N} \cdot \mathrm{~m}]$

The continuous effective load torque must be lower than the servo motor rated torque.
(10) Torque pattern

(11) Selection results

The following servo motor and servo amplifier are selected as a result of the calculation.
Servo motor: HG-KR23
Servo amplifier: MR-J4-20A
(a) Electronic gear setting

CMX = 262144
CDV $=625$
(b) During rapid feed

Servo motor speed $\mathrm{N}_{0}=3000[\mathrm{r} / \mathrm{min}]$
(c) Acceleration/deceleration time constant

$$
\mathrm{t}_{\mathrm{psa}}=\mathrm{t}_{\mathrm{psd}}=0.05[\mathrm{~s}]
$$

App. 5.10 Coasting distance of electromagnetic brake

At an emergency stop, the servo motor with an electromagnetic brake stops as the following diagram. Here, the maximum coasting distance (during fast feed) $L_{\max }$ will be the area shown with the diagonal line in the figure and can be calculated approximately with equation 5.30. The effect of the load torque is greater near the stopping area. When the load torque is large, the servo motor will stop faster than the value obtained in the equation.

$L_{\text {max }}=\frac{\mathrm{V}_{0}}{60} \cdot\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\frac{\mathrm{t}_{3}}{2}\right)$
$\mathrm{L}_{\text {max }}$: Maximum coasting distance [mm]
V_{0} : Machine's fast feed speed [$\mathrm{mm} / \mathrm{min}$]
t_{1} : Delay time of control section [s]
t_{2} : Braking delay time (Note) [s]
t_{3} : Braking time [s]
$t_{3}=\frac{\left(\mathrm{J}_{\mathrm{L}}+\mathrm{J}_{\mathrm{M}}\right) \cdot \mathrm{N}_{0}}{9.55 \cdot 10^{4} \cdot\left(\mathrm{~T}_{\mathrm{L}}+0.8 \cdot \mathrm{~T}_{\mathrm{B}}\right)}$
J_{L} : Load moment of inertia converted into equivalent value on servo motor shaft (Note) $\left[\mathrm{kg} \cdot \mathrm{cm}^{2}\right]$
J_{M} : Servo motor rotor's inertia moment $\left[\mathrm{kg} \cdot \mathrm{cm}^{2}\right]$
N_{0} : Servo motor speed during fast feed [r/min]
T_{L} : Load torque converted into equivalent value on servo motor shaft $[\mathrm{N} \cdot \mathrm{m}]$
T_{B} : Brake static friction torque (Note) [$\mathrm{N} \cdot \mathrm{m}$]
Note. Refer to the chapter of the servo motor series for t_{2} and $T_{B} . J_{L}$ is moment of inertia of the machine at the servo motor shaft.

App. 5.11 Equation for calculating the electromagnetic brake workload
Calculate the brake workload $\mathrm{Eb}[\mathrm{J}]$ at an emergency stop with the following equation.
$E b=\frac{\left(J_{M}+J_{L}\right) \cdot N^{2}}{182} \cdot 10^{-4}$

N: Servo motor speed [r/min]
J_{M} : Servo motor rotor's inertia moment $\left[\mathrm{kg} \cdot \mathrm{cm}^{2}\right]$
J_{L} : Load moment of inertia converted into equivalent value on servo motor shaft $\left[\mathrm{kg} \cdot \mathrm{cm}^{2}\right]$

App. 6 Selection example of servo motor power cable

POINT

Selection condition of wire size is as follows.
Wire length: 30 m or less
Some cables do not fit into the option or the recommended cable clamp. Select a cable clamp according to the cable diameter.

Selection example when using the 600 V grade EP rubber insulated chloroprene sheath cab-tire cable (2PNCT) for servo motor power (U, V, and W) is indicated below.

Servo motor	Wire size $\left[\mathrm{mm}^{2}\right]$
HG-SR52	1.25
HG-SR102	1.25
HG-SR152	2
HG-SR202	2
HG-SR352	3.5
HG-SR502	5.5
HG-SR702	8
HG-SR51	1.25
HG-SR81	1.25
HG-SR121	2
HG-SR201	2
HG-SR301	3.5
HG-SR421	5.5

App. 7 Crimping connector for CNP3

MR-J4W
Servo amplifier

Note. This figure shows the 3-axis servo amplifier.

No.	Name	Model	Description	Application
1)	Connector set	MR-J3WCNP3DL	The connector set is used for connecting to the servo amplifier directly using MR-PWS1CBL_M-_. For CNP3A/CNP3B/CNP3C Receptacle housing: F35FDC-04V-K	Quantity: 1 For thin wire
2)	Connector set	MR-J3WCNP3- DL-20P	Receptacle contact: LF3F-41GF-P2.0 (JST) Applicable wire Wire size: $0.75 \mathrm{~mm}^{2}$ (AWG 19) to $1.25 \mathrm{~mm}^{2}$ (AWG 16) Insulator OD: 1.8 mm to 2.8 mm The crimping tool (YRF-880) is required.	Quantity: 20 For thin wire
3)	Connector set	MR-J3WCNP3D2L	The connector set is used for connecting to the servo amplifier directly without using MR-PWS1CBL_M-_. For CNP3A/CNP3B/CNP3C Receptacle housing: F35FDC-04V-K	Quantity: 1 For thick wire
4)	Connector set	$\begin{array}{\|l} \hline \text { MR-J3WCNP3- } \\ \text { D2L-20P } \end{array}$	Receptacle contact: BF3F-71GF-P2.0 (JST) Applicable wire Wire size: $1.25 \mathrm{~mm}^{2}$ (AWG 16) to $2.0 \mathrm{~mm}^{2}$ (AWG 14) Insulator OD: 2.4 mm to 3.4 mm The crimping tool (YRF-1070) is required.	Quantity: 20 For thick wire

App. 8 Connector dimensions

The connector dimensions for wiring the servo motor are shown below.
(1) TE Connectivity

2174053-1

(2) JAE

JN4FT02SJ1-R

Note. The recommended screw tightening torque is $0.1 \mathrm{~N} \cdot \mathrm{~m}$.

Crimping tool: 1596970-1 (for ground clip) 1596847-1 (for receptacle contact)

Note. The recommended screw tightening torque is $0.2 \mathrm{~N} \cdot \mathrm{~m}$.

Crimping tool: CT160-3-TMH5B

KN4FT04SJ1-R

[Unit: mm]

Note. The recommended screw tightening torque is $0.2 \mathrm{~N} \cdot \mathrm{~m}$.

Crimping tool: CT160-3-TMH5B
(3) DDK
(a) CMV1-SP10S-M_/CMV1-SP2S-

Refer to section 3.3 for details of crimping tools.
[Unit: mm]

(b) CMV1-AP10S-M_/CMV1-AP2S-

Refer to section 3.3 for details of crimping tools.
[Unit: mm]

CMV1-AP10S-M_

CMV1-AP2S-_
(c) CE05-6A_-_SD-D-BSS

Model	A	B	C	D	W
CE05-6A18-10SD-D-BSS	1 1/8-18UNEF-2B	34.13	32.1	57	$1-20 U N E F-2 A$
CE05-6A22-22SD-D-BSS	$13 / 8-18 U N E F-2 B$	40.48	38.3	61	$13 / 16-18 U N E F-2 A$
CE05-6A32-17SD-D-BSS	$2-18 U N S-2 B$	56.33	54.2	79	$13 / 4-18 U N S-2 A$

(d) CE05-8A_-_SD-D-BAS
[Unit: mm]

Model	A	B	D	W	R	U	S	Y
CE05-8A18-10SD-D-BAS	1 1/8-18UNEF-2B	34.13	69.5	1-20UNEF-2A	13.2.	30.2	43.4	7.5
CE05-8A22-22SD-D-BAS	$13 / 8-18 \mathrm{UNEF}-2 \mathrm{~B}$	40.48	75.5	$13 / 16-18 U N E F-2 A$	16.3	33.3	49.6	7.5
CE05-8A32-17SD-D-BAS	2-18UNS-2B	56.33	93.5	$13 / 4-18 U N S-2 A$	24.6	44.5	61.9	8.5

(e) CE3057-_A-_-D
[Unit: mm]

Model	Shell size	A	B	C	D	E	F	G	H	V	Bushing	Cable OD
CE3057-10A-1-D	18	23.8	30.1	10.3	41.3	15.9	14.1	31.7	3.2	1-20UNEF-2B	CE3420-10-1	$\begin{gathered} 10.5 \text { to } \\ 14.1 \end{gathered}$
CE3057-10A-2-D							11.0				CE3420-10-2	8.5 to 11
CE3057-12A-1-D	22	23.8	35	10.3	41.3	19	16.0	37.3	4.0	13/16-18UNEF-2B	CE342012-1	12.5 to 16
CE3057-12A-2-D							13.0				CE342012-2	9.5 to 13
CE3057-20A-1-D	32	27.8	51.6	11.9	43	31.7	23.8	51.6	6.3	$13 / 4-18 U N S-2 B$	CE3420-20-1	22 to 23.8

(f) D/MS3106B_-_S
[Unit: mm]

Model	A	J	L	Q	V	W	Y
D/MS3106B18-10S	$11 / 8-18$ UNEF	18.26	52.37	34.13	$1-20 \mathrm{UNEF}$	9.53	42
D/MS3106B22-22S	$13 / 8-18$ UNEF	18.26	56.57	40.48	$13 / 16-18 \mathrm{UNEF}$	9.53	50
D/MS3106B32-17S	$2-18$ UNS	18.26	61.92	56.33	$13 / 4-18$ UNS	11.13	66

(g) D/MS3108B_-_S
[Unit: mm]

Model	A	J	L	Q	R	U	V	W
D/MS3108B18-10S	$11 / 8-18 \mathrm{UNEF}$	18.26	68.27	34.13	20.5	30.2	$1-20 \mathrm{UNEF}$	9.53
D/MS3108B22-22S	$13 / 8-18$ UNEF	18.26	76.98	40.48	24.1	33.3	$13 / 16-18$ UNEF-2A	9.53
D/MS3108B32-17S	$2-18$ UNS	18.26	95.25	56.33	32.8	44.4	$13 / 4-18$ UNS	11.13

(h) D/MS3057-_A

Model	Shell size	A	B	C	D	E	F	G	V	Bushing
D/MS3057-10A	18	23.8	30.1	10.3	15.9	14.3	3.2	31.7	$1-20$ UNEF	AN3420-10
D/MS3057-12A	22	23.8	35.0	10.3	19.0	15.9	4.0	37.3	$13 / 16-18$ UNEF-2A	AN3420-12
D/MS3057-20A	32	27.8	51.6	11.9	31.7	23.8	6.3	51.6	$13 / 4-18 U N S$	AN3420-20

(i) CMV1S-SP10S-M_/CMV1S-SP2S-_

Refer to section 3.3 for details of crimping tools.

(j) CMV1S-AP10S-M_/CMV1S-AP2S-

Refer to section 3.3 for details of crimping tools.

(k) CE05-6A32-17SD-D
[Unit: mm]

Model	A	B	C	D	E	G	H	J
CE05-6A32-17SD-D	$2-18 \mathrm{UNS}-2 \mathrm{~B}$	56.33	37.0	$17 / 8-16 \mathrm{UN}-2 \mathrm{~A}$	13.14	45.3	9.2	19.4

REVISION

*The manual number is given on the bottom left of the back cover.

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

Country/Region	Sales office	Tel/Fax
USA	Mitsubishi Electric Automation Inc.	Tel : +1-847-478-2100
	500 Corporate Woods Parkway, Vernon Hills, IL 60061, USA	Fax : +1-847-478-0327
Germany	Mitsubishi Electric Europe B.V. German Branch	Tel : +49-2102-486-0
	Gothaer Strasse 8, D-40880 Ratingen, Germany	Fax : +49-2102-486-1120
Italy	Mitsubishi Electric Europe B.V. Italian Branch	Tel : +39-39-60531
	Viale Colleoni 7	Fax : +39-39-6053312
	1-20041 Agrate Brianza (Milano), Italy	
China	Mitsubishi Electric Automation (China) Ltd.	Tel : +86-21-6120-0808
	4F Zhi Fu Plazz, No. 80 Xin Chang Road	Fax : +86-21-6121-2444
	Shanghai 200003, China	
Taiwan	Setsuyo Enterprise Co., Ltd.	Tel : +886-2-2299-2499
	6F, No. 105 Wu-Kung 3rd Rd, Wu-Ku Hsiang, Taipei Hsine, Taiwan	Fax : +886-2-2299-2509
Korea	Mitsubishi Electric Automation Korea Co., Ltd.	Tel : +82-2-3660-9552
	3F, 1480-6, Gayang-dong, Gangseo-gu, Seoul	Fax : +82-2-3664-8372
Singapore	Mitsubishi Electric Asia Pte, Ltd.	Tel : +65-6470-2460
	307 Alexandra Road \#05-01/02,	Fax : +65-6476-7439
	Mitsubishi Electric Building Singapore 159943	

Warranty

1. Warranty period and coverage

We will repair any failure or defect hereinafter referred to as "failure" in our FA equipment hereinafter referred to as the "Product" arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit are repaired or replaced.
[Term]
The term of warranty for Product is twelve (12) months after your purchase or delivery of the Product to a place designated by you or eighteen (18) months from the date of manufacture whichever comes first ("Warranty Period"). Warranty period for repaired Product cannot exceed beyond the original warranty period before any repair work.

[Limitations]

(1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule.

It can also be carried out by us or our service company upon your request and the actual cost will be charged. However, it will not be charged if we are responsible for the cause of the failure.
(2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
(3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
(i) a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
(ii) a failure caused by any alteration, etc. to the Product made on your side without our approval
(iii) a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
(iv) a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
(v) any replacement of consumable parts (battery, fan, smoothing capacitor, etc.)
(vi) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
(vii) a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
(viii) any other failures which we are not responsible for or which you acknowledge we are not responsible for
2. Term of warranty after the stop of production
(1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
(2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas countries

Our regional FA Center in overseas countries will accept the repair work of the Product. However, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA center for details.
4. Exclusion of responsibility for compensation against loss of opportunity, secondary loss, etc.

Whether under or after the term of warranty, we assume no responsibility for any damages arisen from causes for which we are not responsible, any losses of opportunity and/or profit incurred by you due to a failure of the Product, any damages, secondary damages or compensation for accidents arisen under a specific circumstance that are foreseen or unforeseen by our company, any damages to products other than the Product, and also compensation for any replacement work, readjustment, start-up test run of local machines and the Product and any other operations conducted by you.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.
6. Application and use of the Product
(1) For the use of our General-Purpose AC Servo, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in General-Purpose AC Servo, and a backup or fail-safe function should operate on an external system to General-Purpose AC Servo when any failure or malfunction occurs.
(2) Our General-Purpose AC Servo is designed and manufactured as a general purpose product for use at general industries. Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used
In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used. We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

[^0]: Note. The other side connector

[^1]: Note. Cable clamp and bushing for 5.5 mm to 7.5 mm and 7.0 mm to 9.0 mm of cable outer diameter are included.

[^2]: T_{a} : Acceleration torque
 T_{d} : Deceleration torque
 $\mathrm{T}_{\text {Ma: }}$: Torque necessary for acceleration
 $\mathrm{T}_{\text {Md }}$: Torque necessary for deceleration
 $\mathrm{T}_{\text {LH: }}$ Load torque converted into equivalent value on servo motor shaft during stop
 T_{L} : Load torque converted into equivalent value on servo motor shaft
 T_{u} : Unbalanced torque
 T_{F} : Load friction torque
 T_{B} : Brake static friction torque
 $\mathrm{T}_{\mathrm{L} 0}$: Load torque on load shaft
 $\mathrm{T}_{\text {rms }}$: Continuous effective load torque converted into equivalent value on servo motor shaft
 J_{L} : Load inertia moment converted into equivalent value on servo motor shaft
 $\mathrm{J}_{\mathrm{L} 0}$: Load inertia moment on load shaft
 J_{M} : Servo motor's rotor inertia moment
 N : Servo motor speed
 N_{0} : Servo motor speed during fast feed
 $\mathrm{N}_{\mathrm{L} 0}$: Load shaft speed during fast feed
 V : Moving part speed
 V_{0} : Moving part speed during fast feed
 P_{B} : Ball screw lead
 Z_{1} : Number of gear teeth on servo motor shaft
 Z_{2} : Number of gear teeth on load gear
 n : Gear ratio $\mathrm{n}=\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}}$
 Speed reduced when $n>1$, Speed increased when $n<1$
 η : Drive system efficiency

